Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $34$ | |
| Group : | $C_2^4 : A_5$ | |
| CHM label : | $[2^{4}]A(5)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,10)(5,7,9), (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 60: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $A_5$
Low degree siblings
16T1081, 20T172, 20T177, 30T214, 30T217, 40T888, 40T889, 40T932, 40T942, 40T944, 40T945Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 1, 6)( 2, 7)( 4, 9)( 5,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 1, 2)( 3, 4)( 6, 7)( 8, 9)$ |
| $ 4, 2, 2, 2 $ | $120$ | $4$ | $( 1, 2)( 3, 9, 8, 4)( 5,10)( 6, 7)$ |
| $ 4, 4, 1, 1 $ | $60$ | $4$ | $( 1, 7, 6, 2)( 3, 9, 8, 4)$ |
| $ 3, 3, 1, 1, 1, 1 $ | $80$ | $3$ | $( 1, 2, 3)( 6, 7, 8)$ |
| $ 3, 3, 2, 2 $ | $80$ | $6$ | $( 1, 2, 3)( 4, 9)( 5,10)( 6, 7, 8)$ |
| $ 6, 2, 1, 1 $ | $80$ | $6$ | $( 1, 7, 8, 6, 2, 3)( 5,10)$ |
| $ 6, 2, 1, 1 $ | $80$ | $6$ | $( 1, 7, 8, 6, 2, 3)( 4, 9)$ |
| $ 5, 5 $ | $192$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
| $ 5, 5 $ | $192$ | $5$ | $( 1, 2, 3, 5, 4)( 6, 7, 8,10, 9)$ |
Group invariants
| Order: | $960=2^{6} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [960, 11358] |
| Character table: |
2 6 5 6 4 3 4 2 2 2 2 . .
3 1 1 1 . . . 1 1 1 1 . .
5 1 . . . . . . . . . 1 1
1a 2a 2b 2c 4a 4b 3a 6a 6b 6c 5a 5b
2P 1a 1a 1a 1a 2a 2b 3a 3a 3a 3a 5b 5a
3P 1a 2a 2b 2c 4a 4b 1a 2a 2b 2b 5b 5a
5P 1a 2a 2b 2c 4a 4b 3a 6a 6c 6b 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 3 3 3 -1 -1 -1 . . . . B *B
X.3 3 3 3 -1 -1 -1 . . . . *B B
X.4 4 4 4 . . . 1 1 1 1 -1 -1
X.5 5 5 5 1 1 1 -1 -1 -1 -1 . .
X.6 5 1 -3 1 -1 1 2 -2 . . . .
X.7 5 1 -3 1 -1 1 -1 1 A -A . .
X.8 5 1 -3 1 -1 1 -1 1 -A A . .
X.9 10 -2 2 -2 . 2 1 1 -1 -1 . .
X.10 10 -2 2 2 . -2 1 1 -1 -1 . .
X.11 15 3 -9 -1 1 -1 . . . . . .
X.12 20 -4 4 . . . -1 -1 1 1 . .
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
B = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|