Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $33$ | |
| Group : | $F_5 \wr C_2$ | |
| CHM label : | $[F(5)^{2}]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (2,4,6,8,10), (1,6)(2,7)(3,8)(4,9)(5,10), (2,4,8,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 32: $C_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
20T155, 20T161, 20T167, 20T169, 25T50, 40T874, 40T875, 40T876, 40T877, 40T878, 40T879, 40T880, 40T881, 40T882, 40T883Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 2, 4, 6, 8,10)$ |
| $ 5, 5 $ | $16$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ |
| $ 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| $ 10 $ | $80$ | $10$ | $( 1, 8, 3,10, 5, 2, 7, 4, 9, 6)$ |
| $ 4, 4, 1, 1 $ | $50$ | $4$ | $( 3, 5, 9, 7)( 4, 8,10, 6)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4,10)( 6, 8)$ |
| $ 5, 2, 2, 1 $ | $40$ | $10$ | $( 1, 3, 5, 7, 9)( 4,10)( 6, 8)$ |
| $ 4, 4, 2 $ | $100$ | $4$ | $( 1, 6, 3, 8)( 2, 7)( 4, 5,10, 9)$ |
| $ 4, 4, 1, 1 $ | $25$ | $4$ | $( 3, 5, 9, 7)( 4, 6,10, 8)$ |
| $ 4, 4, 1, 1 $ | $25$ | $4$ | $( 3, 7, 9, 5)( 4, 8,10, 6)$ |
| $ 4, 1, 1, 1, 1, 1, 1 $ | $10$ | $4$ | $( 4, 6,10, 8)$ |
| $ 5, 4, 1 $ | $40$ | $20$ | $( 1, 3, 5, 7, 9)( 4, 6,10, 8)$ |
| $ 4, 2, 2, 1, 1 $ | $50$ | $4$ | $( 3, 9)( 4, 8,10, 6)( 5, 7)$ |
| $ 8, 2 $ | $100$ | $8$ | $( 1, 6, 5,10, 3, 8, 9, 4)( 2, 7)$ |
| $ 4, 1, 1, 1, 1, 1, 1 $ | $10$ | $4$ | $( 4, 8,10, 6)$ |
| $ 5, 4, 1 $ | $40$ | $20$ | $( 1, 3, 5, 7, 9)( 4, 8,10, 6)$ |
| $ 4, 2, 2, 1, 1 $ | $50$ | $4$ | $( 3, 9)( 4, 6,10, 8)( 5, 7)$ |
| $ 8, 2 $ | $100$ | $8$ | $( 1, 6, 9, 4, 3, 8, 5,10)( 2, 7)$ |
Group invariants
| Order: | $800=2^{5} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [800, 1191] |
| Character table: |
2 5 2 1 5 3 1 4 4 2 3 5 5 4 2 4 3 4 2 4 3
5 2 2 2 . 1 1 . 1 1 . . . 1 1 . . 1 1 . .
1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4c 4d 4e 20a 4f 8a 4g 20b 4h 8b
2P 1a 5a 5b 1a 1a 5b 2a 1a 5a 2a 2a 2a 2c 10b 2c 4c 2c 10b 2c 4d
3P 1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4d 4c 4g 20b 4h 8b 4e 20a 4f 8a
5P 1a 1a 1a 2a 2b 2b 4a 2c 2c 4b 4c 4d 4e 4e 4f 8a 4g 4g 4h 8b
7P 1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4d 4c 4g 20b 4h 8b 4e 20a 4f 8a
11P 1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4d 4c 4g 20b 4h 8b 4e 20a 4f 8a
13P 1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4c 4d 4e 20a 4f 8a 4g 20b 4h 8b
17P 1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4c 4d 4e 20a 4f 8a 4g 20b 4h 8b
19P 1a 5a 5b 2a 2b 10a 4a 2c 10b 4b 4d 4c 4g 20b 4h 8b 4e 20a 4f 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1
X.3 1 1 1 1 -1 -1 1 1 1 -1 1 1 1 1 1 -1 1 1 1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
X.5 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 B B B -B -B -B -B B
X.6 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 -B -B -B B B B B -B
X.7 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 B B B B -B -B -B -B
X.8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -B -B -B -B B B B B
X.9 2 2 2 2 . . -2 -2 -2 . 2 2 . . . . . . . .
X.10 2 2 2 2 . . -2 2 2 . -2 -2 . . . . . . . .
X.11 2 2 2 -2 . . . . . . A -A C C -C . /C /C -/C .
X.12 2 2 2 -2 . . . . . . -A A /C /C -/C . C C -C .
X.13 2 2 2 -2 . . . . . . -A A -/C -/C /C . -C -C C .
X.14 2 2 2 -2 . . . . . . A -A -C -C C . -/C -/C /C .
X.15 8 3 -2 . . . . 4 -1 . . . -4 1 . . -4 1 . .
X.16 8 3 -2 . . . . 4 -1 . . . 4 -1 . . 4 -1 . .
X.17 8 3 -2 . . . . -4 1 . . . D -B . . -D B . .
X.18 8 3 -2 . . . . -4 1 . . . -D B . . D -B . .
X.19 16 -4 1 . -4 1 . . . . . . . . . . . . . .
X.20 16 -4 1 . 4 -1 . . . . . . . . . . . . . .
A = -2*E(4)
= -2*Sqrt(-1) = -2i
B = -E(4)
= -Sqrt(-1) = -i
C = 1-E(4)
= 1-Sqrt(-1) = 1-i
D = -4*E(4)
= -4*Sqrt(-1) = -4i
|