Show commands:
Magma
magma: G := TransitiveGroup(10, 31);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $31$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $M_{10}$ | ||
CHM label: | $M(10)=L(10)'2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(4,7)(5,8)(9,10), (1,4,2,8)(3,7,6,5), (1,2,10)(3,4,5)(6,7,8), (1,3,2,6)(4,5,8,7) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
12T181, 20T148, 20T150 x 2, 30T162, 36T1253, 40T591, 45T109Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 4, 4, 1, 1 $ | $180$ | $4$ | $( 3, 4, 6, 5)( 7,10, 8, 9)$ |
$ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 3, 6)( 4, 5)( 7, 8)( 9,10)$ |
$ 4, 4, 1, 1 $ | $90$ | $4$ | $( 3, 9, 6,10)( 4, 8, 5, 7)$ |
$ 3, 3, 3, 1 $ | $80$ | $3$ | $( 2, 3, 6)( 4, 9, 7)( 5, 8,10)$ |
$ 8, 2 $ | $90$ | $8$ | $( 1, 2)( 3, 4,10, 7, 6, 5, 9, 8)$ |
$ 8, 2 $ | $90$ | $8$ | $( 1, 2)( 3, 5,10, 8, 6, 4, 9, 7)$ |
$ 5, 5 $ | $144$ | $5$ | $( 1, 2, 3, 4, 9)( 5, 7,10, 6, 8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 720.765 | magma: IdentifyGroup(G);
|
Character table: |
2 4 2 4 3 . 3 3 . 3 2 . . . 2 . . . 5 1 . . . . . . 1 1a 4a 2a 4b 3a 8a 8b 5a 2P 1a 2a 1a 2a 3a 4b 4b 5a 3P 1a 4a 2a 4b 1a 8a 8b 5a 5P 1a 4a 2a 4b 3a 8b 8a 1a 7P 1a 4a 2a 4b 3a 8b 8a 5a X.1 1 1 1 1 1 1 1 1 X.2 1 -1 1 1 1 -1 -1 1 X.3 9 -1 1 1 . 1 1 -1 X.4 9 1 1 1 . -1 -1 -1 X.5 10 . 2 -2 1 . . . X.6 10 . -2 . 1 A -A . X.7 10 . -2 . 1 -A A . X.8 16 . . . -2 . . 1 A = -E(8)-E(8)^3 = -Sqrt(-2) = -i2 |
magma: CharacterTable(G);