Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $30$ | |
| Group : | $\PGL(2,9)$ | |
| CHM label : | $L(10):2=PGL(2,9)$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,7,3,4,2,5,6,8) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
12T182, 20T146, 30T171, 36T1254, 40T590, 45T110Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 8, 1, 1 $ | $90$ | $8$ | $( 3, 4, 9, 8, 6, 5,10, 7)$ |
| $ 8, 1, 1 $ | $90$ | $8$ | $( 3, 5, 9, 7, 6, 4,10, 8)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 3, 6)( 4, 5)( 7, 8)( 9,10)$ |
| $ 4, 4, 1, 1 $ | $90$ | $4$ | $( 3, 9, 6,10)( 4, 8, 5, 7)$ |
| $ 3, 3, 3, 1 $ | $80$ | $3$ | $( 2, 3, 6)( 4, 9, 7)( 5, 8,10)$ |
| $ 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9)( 8,10)$ |
| $ 5, 5 $ | $72$ | $5$ | $( 1, 2, 3, 4, 9)( 5, 7,10, 6, 8)$ |
| $ 10 $ | $72$ | $10$ | $( 1, 2, 3, 5, 4, 8, 6,10, 9, 7)$ |
| $ 10 $ | $72$ | $10$ | $( 1, 2, 3, 7, 8, 4, 6, 9,10, 5)$ |
| $ 5, 5 $ | $72$ | $5$ | $( 1, 2, 3, 8,10)( 4, 7, 5, 9, 6)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 764] |
| Character table: |
2 4 3 3 4 3 . 2 1 1 1 1
3 2 . . . . 2 . . . . .
5 1 . . . . . 1 1 1 1 1
1a 8a 8b 2a 4a 3a 2b 5a 10a 10b 5b
2P 1a 4a 4a 1a 2a 3a 1a 5b 5a 5b 5a
3P 1a 8b 8a 2a 4a 1a 2b 5b 10b 10a 5a
5P 1a 8b 8a 2a 4a 3a 2b 1a 2b 2b 1a
7P 1a 8a 8b 2a 4a 3a 2b 5b 10b 10a 5a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 -1 1 -1 -1 1
X.3 8 . . . . -1 -2 B *B B *B
X.4 8 . . . . -1 -2 *B B *B B
X.5 8 . . . . -1 2 B -*B -B *B
X.6 8 . . . . -1 2 *B -B -*B B
X.7 9 1 1 1 1 . -1 -1 -1 -1 -1
X.8 9 -1 -1 1 1 . 1 -1 1 1 -1
X.9 10 . . 2 -2 1 . . . . .
X.10 10 A -A -2 . 1 . . . . .
X.11 10 -A A -2 . 1 . . . . .
A = -E(8)+E(8)^3
= -Sqrt(2) = -r2
B = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|