Show commands:
Magma
magma: G := TransitiveGroup(10, 27);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(D_5 \wr C_2):C_2$ | ||
CHM label: | $[1/2.F(5)^{2}]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7,9,3)(2,4,8,6), (2,4,6,8,10), (2,8)(4,6), (1,6)(2,7)(3,8)(4,9)(5,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$ $16$: $Q_8:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
10T27 x 2, 20T90 x 3, 20T96 x 3, 20T97 x 3, 25T30, 40T393 x 3, 40T394 x 3, 40T395 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 4,10)( 6, 8)$ |
$ 4, 4, 1, 1 $ | $25$ | $4$ | $( 3, 5, 9, 7)( 4, 6,10, 8)$ |
$ 4, 4, 1, 1 $ | $50$ | $4$ | $( 3, 5, 9, 7)( 4, 8,10, 6)$ |
$ 4, 4, 1, 1 $ | $25$ | $4$ | $( 3, 7, 9, 5)( 4, 8,10, 6)$ |
$ 2, 2, 2, 2, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ |
$ 5, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 2, 4, 6, 8,10)$ |
$ 5, 2, 2, 1 $ | $40$ | $10$ | $( 2, 4, 6, 8,10)( 3, 9)( 5, 7)$ |
$ 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)$ |
$ 4, 4, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 4, 9,10)( 5, 6, 7, 8)$ |
$ 4, 4, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 6, 9, 8)( 4, 5,10, 7)$ |
$ 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 6)( 4, 7)( 5,10)( 8, 9)$ |
$ 10 $ | $40$ | $10$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
$ 10 $ | $40$ | $10$ | $( 1, 2, 3, 6, 5,10, 7, 4, 9, 8)$ |
$ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 6,10, 4, 8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $400=2^{4} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 400.207 | magma: IdentifyGroup(G);
|
Character table: |
2 4 3 4 3 4 4 1 1 3 3 3 3 1 1 1 1 5 2 1 . . . . 2 1 1 . . 1 1 1 2 2 1a 2a 4a 4b 4c 2b 5a 10a 2c 4d 4e 2d 10b 10c 5b 5c 2P 1a 1a 2b 2b 2b 1a 5a 5a 1a 2b 2b 1a 5b 5c 5b 5c 3P 1a 2a 4c 4b 4a 2b 5a 10a 2c 4d 4e 2d 10b 10c 5b 5c 5P 1a 2a 4a 4b 4c 2b 1a 2a 2c 4d 4e 2d 2c 2d 1a 1a 7P 1a 2a 4c 4b 4a 2b 5a 10a 2c 4d 4e 2d 10b 10c 5b 5c X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 X.3 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 1 1 X.4 1 -1 1 -1 1 1 1 -1 -1 1 -1 1 -1 1 1 1 X.5 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 1 X.6 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 1 1 1 X.7 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 X.9 2 . A . -A -2 2 . . . . . . . 2 2 X.10 2 . -A . A -2 2 . . . . . . . 2 2 X.11 8 -4 . . . . 3 1 . . . . . . -2 -2 X.12 8 4 . . . . 3 -1 . . . . . . -2 -2 X.13 8 . . . . . -2 . -4 . . . 1 . 3 -2 X.14 8 . . . . . -2 . . . . -4 . 1 -2 3 X.15 8 . . . . . -2 . . . . 4 . -1 -2 3 X.16 8 . . . . . -2 . 4 . . . -1 . 3 -2 A = -2*E(4) = -2*Sqrt(-1) = -2i |
magma: CharacterTable(G);