Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $\PSL(2,9)$ | |
| CHM label : | $L(10)=PSL(2,9)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(4,7)(5,8)(9,10), (1,2,10)(3,4,5)(6,7,8), (1,3,2,6)(4,5,8,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: None
Low degree siblings
6T15 x 2, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1 $ | $45$ | $2$ | $( 3, 6)( 4, 5)( 7, 8)( 9,10)$ |
| $ 4, 4, 1, 1 $ | $90$ | $4$ | $( 3, 9, 6,10)( 4, 8, 5, 7)$ |
| $ 3, 3, 3, 1 $ | $40$ | $3$ | $( 2, 3, 6)( 4, 9, 7)( 5, 8,10)$ |
| $ 3, 3, 3, 1 $ | $40$ | $3$ | $( 2, 4, 5)( 3, 9, 8)( 6, 7,10)$ |
| $ 5, 5 $ | $72$ | $5$ | $( 1, 2, 3, 4, 9)( 5, 7,10, 6, 8)$ |
| $ 5, 5 $ | $72$ | $5$ | $( 1, 2, 3, 8,10)( 4, 7, 5, 9, 6)$ |
Group invariants
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [360, 118] |
| Character table: |
2 3 3 2 . . . .
3 2 . . 2 2 . .
5 1 . . . . 1 1
1a 2a 4a 3a 3b 5a 5b
2P 1a 1a 2a 3a 3b 5b 5a
3P 1a 2a 4a 1a 1a 5b 5a
5P 1a 2a 4a 3a 3b 1a 1a
X.1 1 1 1 1 1 1 1
X.2 5 1 -1 2 -1 . .
X.3 5 1 -1 -1 2 . .
X.4 8 . . -1 -1 A *A
X.5 8 . . -1 -1 *A A
X.6 9 1 1 . . -1 -1
X.7 10 -2 . 1 1 . .
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|