Show commands: Magma
Group invariants
| Abstract group: | $C_2\times (C_2^4 : D_5)$ |
| |
| Order: | $320=2^{6} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $23$ |
| |
| CHM label: | $[2^{5}]D(5)$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(5,10)$, $(1,9)(2,8)(3,7)(4,6)$, $(1,3,5,7,9)(2,4,6,8,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $10$: $D_{5}$ $20$: $D_{10}$ $160$: $(C_2^4 : C_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $D_{5}$
Low degree siblings
10T23 x 5, 20T71 x 6, 20T73 x 6, 20T76 x 6, 20T81 x 3, 20T85 x 6, 20T87 x 6, 32T9313 x 2, 40T204 x 3, 40T270 x 12, 40T271 x 12, 40T272 x 3, 40T273 x 2, 40T284 x 6, 40T286 x 6, 40T288 x 3, 40T293 x 3, 40T295 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{5}$ | $1$ | $2$ | $5$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| 2B | $2^{3},1^{4}$ | $5$ | $2$ | $3$ | $( 2, 7)( 4, 9)( 5,10)$ |
| 2C | $2^{3},1^{4}$ | $5$ | $2$ | $3$ | $( 3, 8)( 4, 9)( 5,10)$ |
| 2D | $2,1^{8}$ | $5$ | $2$ | $1$ | $(3,8)$ |
| 2E | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| 2F | $2^{2},1^{6}$ | $5$ | $2$ | $2$ | $(1,6)(4,9)$ |
| 2G | $2^{2},1^{6}$ | $5$ | $2$ | $2$ | $(2,7)(3,8)$ |
| 2H | $2^{4},1^{2}$ | $20$ | $2$ | $4$ | $( 1, 2)( 3, 5)( 6, 7)( 8,10)$ |
| 2I | $2^{5}$ | $20$ | $2$ | $5$ | $( 1, 6)( 2, 5)( 3, 4)( 7,10)( 8, 9)$ |
| 4A | $4^{2},2$ | $20$ | $4$ | $7$ | $( 1, 6)( 2, 5, 7,10)( 3, 4, 8, 9)$ |
| 4B | $4,2^{3}$ | $20$ | $4$ | $6$ | $( 1, 4, 6, 9)( 2, 3)( 5,10)( 7, 8)$ |
| 4C | $4,2^{3}$ | $20$ | $4$ | $6$ | $( 1, 9)( 2, 8, 7, 3)( 4, 6)( 5,10)$ |
| 4D | $4^{2},1^{2}$ | $20$ | $4$ | $6$ | $( 1, 2, 6, 7)( 3,10, 8, 5)$ |
| 4E | $4,2^{2},1^{2}$ | $20$ | $4$ | $5$ | $( 2,10)( 3, 9, 8, 4)( 5, 7)$ |
| 4F | $4,2^{2},1^{2}$ | $20$ | $4$ | $5$ | $( 1, 8, 6, 3)( 4,10)( 5, 9)$ |
| 5A1 | $5^{2}$ | $32$ | $5$ | $8$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)$ |
| 5A2 | $5^{2}$ | $32$ | $5$ | $8$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
| 10A1 | $10$ | $32$ | $10$ | $9$ | $( 1,10, 4, 8, 2, 6, 5, 9, 3, 7)$ |
| 10A3 | $10$ | $32$ | $10$ | $9$ | $( 1, 8, 5, 7, 4, 6, 3,10, 2, 9)$ |
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 5A1 | 5A2 | 10A1 | 10A3 | ||
| Size | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 32 | 32 | 32 | 32 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2E | 2F | 2G | 2E | 2G | 2F | 5A2 | 5A1 | 5A1 | 5A2 | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 1A | 1A | 2A | 2A | |
| Type | |||||||||||||||||||||
| 320.1636.1a | R | ||||||||||||||||||||
| 320.1636.1b | R | ||||||||||||||||||||
| 320.1636.1c | R | ||||||||||||||||||||
| 320.1636.1d | R | ||||||||||||||||||||
| 320.1636.2a1 | R | ||||||||||||||||||||
| 320.1636.2a2 | R | ||||||||||||||||||||
| 320.1636.2b1 | R | ||||||||||||||||||||
| 320.1636.2b2 | R | ||||||||||||||||||||
| 320.1636.5a | R | ||||||||||||||||||||
| 320.1636.5b | R | ||||||||||||||||||||
| 320.1636.5c | R | ||||||||||||||||||||
| 320.1636.5d | R | ||||||||||||||||||||
| 320.1636.5e | R | ||||||||||||||||||||
| 320.1636.5f | R | ||||||||||||||||||||
| 320.1636.5g | R | ||||||||||||||||||||
| 320.1636.5h | R | ||||||||||||||||||||
| 320.1636.5i | R | ||||||||||||||||||||
| 320.1636.5j | R | ||||||||||||||||||||
| 320.1636.5k | R | ||||||||||||||||||||
| 320.1636.5l | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{10} - t x^{6} + \left(3 t + 25\right) x^{4} + \left(-4 t + 300\right)$
|