# Properties

 Label 10T21 Degree $10$ Order $200$ Cyclic no Abelian no Solvable yes Primitive no $p$-group no Group: $D_5^2 : C_2$

# Related objects

Show commands: Magma

magma: G := TransitiveGroup(10, 21);

## Group action invariants

 Degree $n$: $10$ magma: t, n := TransitiveGroupIdentification(G); n; Transitive number $t$: $21$ magma: t, n := TransitiveGroupIdentification(G); t; Group: $D_5^2 : C_2$ CHM label: $[D(5)^{2}]2$ Parity: $-1$ magma: IsEven(G); Primitive: no magma: IsPrimitive(G); Nilpotency class: $-1$ (not nilpotent) magma: NilpotencyClass(G); $\card{\Aut(F/K)}$: $1$ magma: Order(Centralizer(SymmetricGroup(n), G)); Generators: (2,4,6,8,10), (2,8)(4,6), (1,6)(2,7)(3,8)(4,9)(5,10) magma: Generators(G);

## Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$8$:  $D_{4}$

Resolvents shown for degrees $\leq 47$

## Subfields

Degree 2: $C_2$

Degree 5: None

## Low degree siblings

10T19, 10T21, 20T48 x 2, 20T50 x 2, 20T55, 20T57 x 2, 25T21, 40T167 x 2, 40T170

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

## Conjugacy classes

 Cycle Type Size Order Representative $1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $1$ $1$ $()$ $2, 2, 1, 1, 1, 1, 1, 1$ $10$ $2$ $( 4,10)( 6, 8)$ $2, 2, 2, 2, 1, 1$ $25$ $2$ $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ $5, 1, 1, 1, 1, 1$ $4$ $5$ $( 2, 4, 6, 8,10)$ $5, 2, 2, 1$ $20$ $10$ $( 2, 4, 6, 8,10)( 3, 9)( 5, 7)$ $5, 1, 1, 1, 1, 1$ $4$ $5$ $( 2, 6,10, 4, 8)$ $5, 2, 2, 1$ $20$ $10$ $( 2, 6,10, 4, 8)( 3, 9)( 5, 7)$ $2, 2, 2, 2, 2$ $10$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)$ $4, 4, 2$ $50$ $4$ $( 1, 2)( 3, 4, 9,10)( 5, 6, 7, 8)$ $10$ $20$ $10$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ $10$ $20$ $10$ $( 1, 2, 5, 6, 9,10, 3, 4, 7, 8)$ $5, 5$ $4$ $5$ $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ $5, 5$ $8$ $5$ $( 1, 3, 5, 7, 9)( 2, 6,10, 4, 8)$ $5, 5$ $4$ $5$ $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$

magma: ConjugacyClasses(G);

## Group invariants

 Order: $200=2^{3} \cdot 5^{2}$ magma: Order(G); Cyclic: no magma: IsCyclic(G); Abelian: no magma: IsAbelian(G); Solvable: yes magma: IsSolvable(G); Label: 200.43 magma: IdentifyGroup(G);
 Character table:  2 3 2 3 1 1 1 1 2 2 1 1 1 . 1 5 2 1 . 2 1 2 1 1 . 1 1 2 2 2 1a 2a 2b 5a 10a 5b 10b 2c 4a 10c 10d 5c 5d 5e 2P 1a 1a 1a 5b 5b 5a 5a 1a 2b 5c 5e 5e 5d 5c 3P 1a 2a 2b 5b 10b 5a 10a 2c 4a 10d 10c 5e 5d 5c 5P 1a 2a 2b 1a 2a 1a 2a 2c 4a 2c 2c 1a 1a 1a 7P 1a 2a 2b 5b 10b 5a 10a 2c 4a 10d 10c 5e 5d 5c X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 1 X.3 1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 1 X.4 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 X.5 2 . -2 2 . 2 . . . . . 2 2 2 X.6 4 -2 . A C *A *C . . . . B -1 *B X.7 4 -2 . *A *C A C . . . . *B -1 B X.8 4 . . B . *B . -2 . C *C *A -1 A X.9 4 . . *B . B . -2 . *C C A -1 *A X.10 4 . . B . *B . 2 . -C -*C *A -1 A X.11 4 . . *B . B . 2 . -*C -C A -1 *A X.12 4 2 . A -C *A -*C . . . . B -1 *B X.13 4 2 . *A -*C A -C . . . . *B -1 B X.14 8 . . -2 . -2 . . . . . -2 3 -2 A = -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4 = (3-Sqrt(5))/2 = 1-b5 B = 2*E(5)^2+2*E(5)^3 = -1-Sqrt(5) = -1-r5 C = -E(5)^2-E(5)^3 = (1+Sqrt(5))/2 = 1+b5 

magma: CharacterTable(G);