Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $20$ | |
| Group : | $C_5^2 : Q_8$ | |
| CHM label : | $[5^{2}:4_{2}]2_{2}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,9,7)(2,4,8,6), (2,4,6,8,10), (1,6,9,4)(2,3,8,7)(5,10) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
10T20 x 2, 20T47 x 3, 25T17, 40T166 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 1, 1 $ | $50$ | $4$ | $( 3, 5, 9, 7)( 4, 8,10, 6)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ |
| $ 5, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 2, 4, 6, 8,10)$ |
| $ 4, 4, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 4, 9,10)( 5, 6, 7, 8)$ |
| $ 4, 4, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 6, 9, 8)( 4, 5,10, 7)$ |
| $ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| $ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 6,10, 4, 8)$ |
Group invariants
| Order: | $200=2^{3} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [200, 44] |
| Character table: |
2 3 2 3 . 2 2 . .
5 2 . . 2 . . 2 2
1a 4a 2a 5a 4b 4c 5b 5c
2P 1a 2a 1a 5a 2a 2a 5b 5c
3P 1a 4a 2a 5a 4b 4c 5b 5c
5P 1a 4a 2a 1a 4b 4c 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 1 1
X.3 1 -1 1 1 1 -1 1 1
X.4 1 1 1 1 -1 -1 1 1
X.5 2 . -2 2 . . 2 2
X.6 8 . . 3 . . -2 -2
X.7 8 . . -2 . . -2 3
X.8 8 . . -2 . . 3 -2
|