Show commands:
Magma
magma: G := TransitiveGroup(10, 20);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5^2 : Q_8$ | ||
CHM label: | $[5^{2}:4_{2}]2_{2}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,9,7)(2,4,8,6), (2,4,6,8,10), (1,6,9,4)(2,3,8,7)(5,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $Q_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
10T20 x 2, 20T47 x 3, 25T17, 40T166 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 4, 4, 1, 1 $ | $50$ | $4$ | $( 3, 5, 9, 7)( 4, 8,10, 6)$ |
$ 2, 2, 2, 2, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ |
$ 5, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 2, 4, 6, 8,10)$ |
$ 4, 4, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 4, 9,10)( 5, 6, 7, 8)$ |
$ 4, 4, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 6, 9, 8)( 4, 5,10, 7)$ |
$ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 6,10, 4, 8)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $200=2^{3} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 200.44 | magma: IdentifyGroup(G);
|
Character table: |
2 3 2 3 . 2 2 . . 5 2 . . 2 . . 2 2 1a 4a 2a 5a 4b 4c 5b 5c 2P 1a 2a 1a 5a 2a 2a 5b 5c 3P 1a 4a 2a 5a 4b 4c 5b 5c 5P 1a 4a 2a 1a 4b 4c 1a 1a X.1 1 1 1 1 1 1 1 1 X.2 1 -1 1 1 -1 1 1 1 X.3 1 -1 1 1 1 -1 1 1 X.4 1 1 1 1 -1 -1 1 1 X.5 2 . -2 2 . . 2 2 X.6 8 . . 3 . . -2 -2 X.7 8 . . -2 . . -2 3 X.8 8 . . -2 . . 3 -2 |
magma: CharacterTable(G);