magma: G := TransitiveGroup(10, 2);
Degree $n$: | | $10$ |
magma: t, n := TransitiveGroupIdentification(G); n;
|
Transitive number $t$: | | $2$ |
magma: t, n := TransitiveGroupIdentification(G); t;
|
Group: | | $D_5$ |
CHM label: | | $D(10)=5:2$ |
Parity: | | $-1$
|
|
Primitive: | | no |
|
Nilpotency class: | | $-1$ (not nilpotent) |
magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | | $10$ |
magma: Order(Centralizer(SymmetricGroup(n), G));
|
Generators: | | (1,4)(2,3)(5,10)(6,9)(7,8), (1,3,5,7,9)(2,4,6,8,10)
|
|
Resolvents shown for degrees $\leq 47$
Degree 2: $C_2$
Degree 5: $D_{5}$
5T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ |
$1$ |
$1$ |
$()$ |
$ 2, 2, 2, 2, 2 $ |
$5$ |
$2$ |
$( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7)$ |
$ 5, 5 $ |
$2$ |
$5$ |
$( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 5, 5 $ |
$2$ |
$5$ |
$( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
magma: ConjugacyClasses(G);
Character table:
| |
2 1 1 . .
5 1 . 1 1
1a 2a 5a 5b
2P 1a 1a 5b 5a
3P 1a 2a 5b 5a
5P 1a 2a 1a 1a
X.1 1 1 1 1
X.2 1 -1 1 1
X.3 2 . A *A
X.4 2 . *A A
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
|
magma: CharacterTable(G);
Complete
list of indecomposable integral representations:
Name | Dim |
$( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) \mapsto $ |
$(1,4)(2,3)(5,10)(6,9)(7,8) \mapsto $ |
Triv | $1$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
Sign | $1$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
$\left(\begin{array}{r}-1\end{array}\right)$ |
$L$ | $2$ |
$\left(\begin{array}{rr}1 & 0\\0 & 1\end{array}\right)$ |
$\left(\begin{array}{rr}0 & 1\\1 & 0\end{array}\right)$ |
$A$ | $4$ |
$\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\-1 & -1 & -1 & -1\end{array}\right)$ |
$\left(\begin{array}{rrrr}1 & 0 & 0 & 0\\-1 & -1 & -1 & -1\\0 & 0 & 0 & 1\\0 & 0 & 1 & 0\end{array}\right)$ |
$A'$ | $4$ |
$\left(\begin{array}{rrrr}0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\-1 & -1 & -1 & -1\end{array}\right)$ |
$\left(\begin{array}{rrrr}-1 & 0 & 0 & 0\\1 & 1 & 1 & 1\\0 & 0 & 0 & -1\\0 & 0 & -1 & 0\end{array}\right)$ |
$(A,\textrm{Sign})$ | $5$ |
$\left(\begin{array}{rrrrr}0 & 1 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 1 & 0\\-1 & -1 & -1 & -1 & 0\\1 & 0 & 0 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrrrr}1 & 0 & 0 & 0 & 0\\-1 & -1 & -1 & -1 & 0\\0 & 0 & 0 & 1 & 0\\0 & 0 & 1 & 0 & 0\\-1 & 0 & 0 & 0 & -1\end{array}\right)$ |
$(A',\textrm{Triv})$ | $5$ |
$\left(\begin{array}{rrrrr}0 & 1 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 1 & 0\\-1 & -1 & -1 & -1 & 0\\1 & 0 & 0 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrrrr}-1 & 0 & 0 & 0 & 0\\1 & 1 & 1 & 1 & 0\\0 & 0 & 0 & -1 & 0\\0 & 0 & -1 & 0 & 0\\1 & 0 & 0 & 0 & 1\end{array}\right)$ |
$(A,L)$ | $6$ |
$\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0\\-1 & -1 & -1 & -1 & 0 & 0\\-1 & 0 & 0 & 0 & 1 & 0\\1 & 0 & 0 & 0 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrrrrr}1 & 0 & 0 & 0 & 0 & 0\\-1 & -1 & -1 & -1 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 0 & 1\\-1 & 0 & 0 & 0 & 1 & 0\end{array}\right)$ |
$(A',L)$ | $6$ |
$\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0\\-1 & -1 & -1 & -1 & 0 & 0\\1 & 0 & 0 & 0 & 1 & 0\\1 & 0 & 0 & 0 & 0 & 1\end{array}\right)$ |
$\left(\begin{array}{rrrrrr}-1 & 0 & 0 & 0 & 0 & 0\\1 & 1 & 1 & 1 & 0 & 0\\0 & 0 & 0 & -1 & 0 & 0\\0 & 0 & -1 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 0 & 1\\1 & 0 & 0 & 0 & 1 & 0\end{array}\right)$ |
$(A+A',L)$ | $10$ |
$\left(\begin{array}{rrrrrrrrrr}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$ |
$\left(\begin{array}{rrrrrrrrrr}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$ |
|
The decomposition of an arbitrary integral representation as a direct
sum of indecomposables is not unique, in general. It
is unique up to the following isomorphisms: