Show commands:
Magma
magma: G := TransitiveGroup(10, 18);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5^2 : C_8$ | ||
CHM label: | $[5^{2}:4]2_{2}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7,9,3)(2,4,8,6), (1,4,3,2,9,6,7,8)(5,10), (2,4,6,8,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: None
Low degree siblings
10T18 x 2, 20T56 x 3, 25T20, 40T171 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 4, 4, 1, 1 $ | $25$ | $4$ | $( 3, 5, 9, 7)( 4, 6,10, 8)$ |
$ 4, 4, 1, 1 $ | $25$ | $4$ | $( 3, 7, 9, 5)( 4, 8,10, 6)$ |
$ 2, 2, 2, 2, 1, 1 $ | $25$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)$ |
$ 5, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 2, 4, 6, 8,10)$ |
$ 8, 2 $ | $25$ | $8$ | $( 1, 2)( 3, 4, 7, 8, 9,10, 5, 6)$ |
$ 8, 2 $ | $25$ | $8$ | $( 1, 2)( 3, 6, 5,10, 9, 8, 7, 4)$ |
$ 8, 2 $ | $25$ | $8$ | $( 1, 2)( 3, 8, 5, 4, 9, 6, 7,10)$ |
$ 8, 2 $ | $25$ | $8$ | $( 1, 2)( 3,10, 7, 6, 9, 4, 5, 8)$ |
$ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 5, 5 $ | $8$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 8, 4,10, 6)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $200=2^{3} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 200.40 | magma: IdentifyGroup(G);
|
Character table: |
2 3 3 3 3 . 3 3 3 3 . . 5 2 . . . 2 . . . . 2 2 1a 4a 4b 2a 5a 8a 8b 8c 8d 5b 5c 2P 1a 2a 2a 1a 5a 4b 4a 4a 4b 5b 5c 3P 1a 4b 4a 2a 5a 8c 8d 8a 8b 5b 5c 5P 1a 4a 4b 2a 1a 8d 8c 8b 8a 1a 1a 7P 1a 4b 4a 2a 5a 8b 8a 8d 8c 5b 5c X.1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 1 1 -1 -1 -1 -1 1 1 X.3 1 -1 -1 1 1 A -A -A A 1 1 X.4 1 -1 -1 1 1 -A A A -A 1 1 X.5 1 A -A -1 1 B /B -/B -B 1 1 X.6 1 A -A -1 1 -B -/B /B B 1 1 X.7 1 -A A -1 1 -/B -B B /B 1 1 X.8 1 -A A -1 1 /B B -B -/B 1 1 X.9 8 . . . 3 . . . . -2 -2 X.10 8 . . . -2 . . . . -2 3 X.11 8 . . . -2 . . . . 3 -2 A = -E(4) = -Sqrt(-1) = -i B = -E(8) |
magma: CharacterTable(G);