Properties

Label 10T15
10T15 1 3 1->3 9 1->9 2 4 2->4 7 2->7 8 2->8 5 3->5 3->7 6 4->6 4->6 5->7 10 5->10 6->8 7->9 8->10 9->1 10->2
Degree $10$
Order $160$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $(C_2^4 : C_5) : C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(10, 15);
 

Group invariants

Abstract group:  $(C_2^4 : C_5) : C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $160=2^{5} \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $10$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $15$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $[2^{4}]D(5)$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,9)(2,8)(3,7)(4,6)$, $(1,3,5,7,9)(2,4,6,8,10)$, $(2,7)(5,10)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$10$:  $D_{5}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 5: $D_{5}$

Low degree siblings

10T15 x 2, 10T16 x 3, 16T415, 20T38 x 6, 20T39, 20T43 x 3, 20T45 x 3, 32T2132, 40T143 x 3, 40T144 x 3, 40T145 x 6, 40T146

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{10}$ $1$ $1$ $0$ $()$
2A $2^{2},1^{6}$ $5$ $2$ $2$ $( 1, 6)( 5,10)$
2B $2^{2},1^{6}$ $5$ $2$ $2$ $(1,6)(4,9)$
2C $2^{4},1^{2}$ $5$ $2$ $4$ $( 2, 7)( 3, 8)( 4, 9)( 5,10)$
2D $2^{4},1^{2}$ $20$ $2$ $4$ $( 1, 2)( 3, 5)( 6, 7)( 8,10)$
4A $4,2^{3}$ $20$ $4$ $6$ $( 1,10, 6, 5)( 2, 9)( 3, 8)( 4, 7)$
4B $4,2^{3}$ $20$ $4$ $6$ $( 1, 4, 6, 9)( 2, 3)( 5,10)( 7, 8)$
4C $4^{2},1^{2}$ $20$ $4$ $6$ $( 2,10, 7, 5)( 3, 4, 8, 9)$
5A1 $5^{2}$ $32$ $5$ $8$ $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$
5A2 $5^{2}$ $32$ $5$ $8$ $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$

Malle's constant $a(G)$:     $1/2$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 4A 4B 4C 5A1 5A2
Size 1 5 5 5 20 20 20 20 32 32
2 P 1A 1A 1A 1A 1A 2A 2B 2C 5A2 5A1
5 P 1A 2A 2B 2C 2D 4A 4B 4C 1A 1A
Type
160.234.1a R 1 1 1 1 1 1 1 1 1 1
160.234.1b R 1 1 1 1 1 1 1 1 1 1
160.234.2a1 R 2 2 2 2 0 0 0 0 ζ52+ζ52 ζ51+ζ5
160.234.2a2 R 2 2 2 2 0 0 0 0 ζ51+ζ5 ζ52+ζ52
160.234.5a R 5 3 1 1 1 1 1 1 0 0
160.234.5b R 5 1 3 1 1 1 1 1 0 0
160.234.5c R 5 1 1 3 1 1 1 1 0 0
160.234.5d R 5 3 1 1 1 1 1 1 0 0
160.234.5e R 5 1 3 1 1 1 1 1 0 0
160.234.5f R 5 1 1 3 1 1 1 1 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{10} + \left(t - 5\right) x^{6} - t x^{4} + 10 x^{2} - 4$ Copy content Toggle raw display