Show commands: Magma
Group invariants
| Abstract group: | $(C_2^4 : C_5) : C_2$ |
| |
| Order: | $160=2^{5} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $15$ |
| |
| CHM label: | $[2^{4}]D(5)$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,9)(2,8)(3,7)(4,6)$, $(1,3,5,7,9)(2,4,6,8,10)$, $(2,7)(5,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $10$: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $D_{5}$
Low degree siblings
10T15 x 2, 10T16 x 3, 16T415, 20T38 x 6, 20T39, 20T43 x 3, 20T45 x 3, 32T2132, 40T143 x 3, 40T144 x 3, 40T145 x 6, 40T146Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{2},1^{6}$ | $5$ | $2$ | $2$ | $( 1, 6)( 5,10)$ |
| 2B | $2^{2},1^{6}$ | $5$ | $2$ | $2$ | $(1,6)(4,9)$ |
| 2C | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| 2D | $2^{4},1^{2}$ | $20$ | $2$ | $4$ | $( 1, 2)( 3, 5)( 6, 7)( 8,10)$ |
| 4A | $4,2^{3}$ | $20$ | $4$ | $6$ | $( 1,10, 6, 5)( 2, 9)( 3, 8)( 4, 7)$ |
| 4B | $4,2^{3}$ | $20$ | $4$ | $6$ | $( 1, 4, 6, 9)( 2, 3)( 5,10)( 7, 8)$ |
| 4C | $4^{2},1^{2}$ | $20$ | $4$ | $6$ | $( 2,10, 7, 5)( 3, 4, 8, 9)$ |
| 5A1 | $5^{2}$ | $32$ | $5$ | $8$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| 5A2 | $5^{2}$ | $32$ | $5$ | $8$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
Malle's constant $a(G)$: $1/2$
Character table
| 1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 5A1 | 5A2 | ||
| Size | 1 | 5 | 5 | 5 | 20 | 20 | 20 | 20 | 32 | 32 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2C | 5A2 | 5A1 | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 1A | 1A | |
| Type | |||||||||||
| 160.234.1a | R | ||||||||||
| 160.234.1b | R | ||||||||||
| 160.234.2a1 | R | ||||||||||
| 160.234.2a2 | R | ||||||||||
| 160.234.5a | R | ||||||||||
| 160.234.5b | R | ||||||||||
| 160.234.5c | R | ||||||||||
| 160.234.5d | R | ||||||||||
| 160.234.5e | R | ||||||||||
| 160.234.5f | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{10} + \left(t - 5\right) x^{6} - t x^{4} + 10 x^{2} - 4$
|