Show commands:
Magma
magma: G := TransitiveGroup(10, 14);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2 \times (C_2^4 : C_5)$ | ||
CHM label: | $[2^{5}]5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (5,10), (1,3,5,7,9)(2,4,6,8,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $10$: $C_{10}$ $80$: $C_2^4 : C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $C_5$
Low degree siblings
10T14 x 2, 20T40 x 12, 20T41 x 6, 20T44 x 3, 20T46 x 3, 32T2133, 40T121 x 6, 40T122 x 6, 40T123 x 12, 40T141, 40T142 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,10)$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 4, 9)( 5,10)$ |
$ 2, 2, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 8)( 5,10)$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 8)( 4, 9)( 5,10)$ |
$ 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 2, 7)( 4, 9)( 5,10)$ |
$ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
$ 5, 5 $ | $16$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)$ |
$ 10 $ | $16$ | $10$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
$ 5, 5 $ | $16$ | $5$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)$ |
$ 10 $ | $16$ | $10$ | $( 1, 3, 5, 7, 9, 6, 8,10, 2, 4)$ |
$ 5, 5 $ | $16$ | $5$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)$ |
$ 10 $ | $16$ | $10$ | $( 1, 4, 2, 5, 8, 6, 9, 7,10, 3)$ |
$ 5, 5 $ | $16$ | $5$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)$ |
$ 10 $ | $16$ | $10$ | $( 1, 5, 9, 8, 7, 6,10, 4, 3, 2)$ |
$ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $160=2^{5} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 160.235 | magma: IdentifyGroup(G);
|
Character table: |
2 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 5 5 1 . . . . . . 1 1 1 1 1 1 1 1 1 1a 2a 2b 2c 2d 2e 2f 5a 10a 5b 10b 5c 10c 5d 10d 2g 2P 1a 1a 1a 1a 1a 1a 1a 5b 5b 5d 5d 5a 5a 5c 5c 1a 3P 1a 2a 2b 2c 2d 2e 2f 5c 10c 5a 10a 5d 10d 5b 10b 2g 5P 1a 2a 2b 2c 2d 2e 2f 1a 2g 1a 2g 1a 2g 1a 2g 2g 7P 1a 2a 2b 2c 2d 2e 2f 5b 10b 5d 10d 5a 10a 5c 10c 2g X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 X.3 1 -1 1 1 -1 -1 1 A -A B -B /B -/B /A -/A -1 X.4 1 -1 1 1 -1 -1 1 B -B /A -/A A -A /B -/B -1 X.5 1 -1 1 1 -1 -1 1 /B -/B A -A /A -/A B -B -1 X.6 1 -1 1 1 -1 -1 1 /A -/A /B -/B B -B A -A -1 X.7 1 1 1 1 1 1 1 A A B B /B /B /A /A 1 X.8 1 1 1 1 1 1 1 B B /A /A A A /B /B 1 X.9 1 1 1 1 1 1 1 /B /B A A /A /A B B 1 X.10 1 1 1 1 1 1 1 /A /A /B /B B B A A 1 X.11 5 -3 1 1 1 1 -3 . . . . . . . . 5 X.12 5 3 1 1 -1 -1 -3 . . . . . . . . -5 X.13 5 -1 -3 1 3 -1 1 . . . . . . . . -5 X.14 5 -1 1 -3 -1 3 1 . . . . . . . . -5 X.15 5 1 -3 1 -3 1 1 . . . . . . . . 5 X.16 5 1 1 -3 1 -3 1 . . . . . . . . 5 A = E(5)^4 B = E(5)^3 |
magma: CharacterTable(G);