Show commands:
Magma
magma: G := TransitiveGroup(10, 12);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
CHM label: | $1/2[S(5)]2=S_{5}(10a)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5,7,9)(2,4,6,8,10), (1,4)(2,7)(3,8)(5,10)(6,9) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $S_5$
Low degree siblings
5T5, 6T14, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 5, 9)( 4, 8,10)$ |
$ 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 2, 4)( 3, 5)( 7, 9)( 8,10)$ |
$ 6, 2, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 4, 5, 8, 9,10)( 6, 7)$ |
$ 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 8)( 4, 9)( 5,10)( 6, 7)$ |
$ 4, 4, 2 $ | $30$ | $4$ | $( 1, 2, 3, 4)( 5,10)( 6, 7, 8, 9)$ |
$ 5, 5 $ | $24$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 120.34 | magma: IdentifyGroup(G);
|
Character table: |
2 3 1 3 1 2 2 . 3 1 1 . 1 1 . . 5 1 . . . . . 1 1a 3a 2a 6a 2b 4a 5a 2P 1a 3a 1a 3a 1a 2a 5a 3P 1a 1a 2a 2b 2b 4a 5a 5P 1a 3a 2a 6a 2b 4a 1a X.1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 -1 1 X.3 4 1 . 1 -2 . -1 X.4 4 1 . -1 2 . -1 X.5 5 -1 1 1 1 -1 . X.6 5 -1 1 -1 -1 1 . X.7 6 . -2 . . . 1 |
magma: CharacterTable(G);