Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $S_5$ | |
| CHM label : | $1/2[S(5)]2=S_{5}(10a)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5,7,9)(2,4,6,8,10), (1,4)(2,7)(3,8)(5,10)(6,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $S_5$
Low degree siblings
5T5, 6T14, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1 $ | $20$ | $3$ | $( 3, 5, 9)( 4, 8,10)$ |
| $ 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 2, 4)( 3, 5)( 7, 9)( 8,10)$ |
| $ 6, 2, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 4, 5, 8, 9,10)( 6, 7)$ |
| $ 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 8)( 4, 9)( 5,10)( 6, 7)$ |
| $ 4, 4, 2 $ | $30$ | $4$ | $( 1, 2, 3, 4)( 5,10)( 6, 7, 8, 9)$ |
| $ 5, 5 $ | $24$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [120, 34] |
| Character table: |
2 3 1 3 1 2 2 .
3 1 1 . 1 1 . .
5 1 . . . . . 1
1a 3a 2a 6a 2b 4a 5a
2P 1a 3a 1a 3a 1a 2a 5a
3P 1a 1a 2a 2b 2b 4a 5a
5P 1a 3a 2a 6a 2b 4a 1a
X.1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1
X.3 4 1 . 1 -2 . -1
X.4 4 1 . -1 2 . -1
X.5 5 -1 1 1 1 -1 .
X.6 5 -1 1 -1 -1 1 .
X.7 6 . -2 . . . 1
|