Further refine search
Results (displaying matches 1-50 of 6759)
Next
| Curve |
Isogeny class |
|
| LMFDB label |
Cremona label |
LMFDB label |
Cremona label |
Weierstrass Coefficients |
Rank |
Torsion structure |
| 14.a3 |
14a2 |
14.a |
14a |
[1, 0, 1, -36, -70] |
0 |
[6] |
| 14.a4 |
14a6 |
14.a |
14a |
[1, 0, 1, -11, 12] |
0 |
[6] |
| 14.a5 |
14a4 |
14.a |
14a |
[1, 0, 1, -1, 0] |
0 |
[6] |
| 14.a6 |
14a1 |
14.a |
14a |
[1, 0, 1, 4, -6] |
0 |
[6] |
| 20.a3 |
20a2 |
20.a |
20a |
[0, 1, 0, -1, 0] |
0 |
[6] |
| 20.a4 |
20a1 |
20.a |
20a |
[0, 1, 0, 4, 4] |
0 |
[6] |
| 30.a4 |
30a5 |
30.a |
30a |
[1, 0, 1, -289, 1862] |
0 |
[6] |
| 30.a5 |
30a4 |
30.a |
30a |
[1, 0, 1, -69, -194] |
0 |
[6] |
| 30.a8 |
30a1 |
30.a |
30a |
[1, 0, 1, 1, 2] |
0 |
[6] |
| 34.a3 |
34a2 |
34.a |
34a |
[1, 0, 0, -43, 105] |
0 |
[6] |
| 34.a4 |
34a1 |
34.a |
34a |
[1, 0, 0, -3, 1] |
0 |
[6] |
| 36.a2 |
36a2 |
36.a |
36a |
[0, 0, 0, -15, 22] |
0 |
[6] |
| 36.a4 |
36a1 |
36.a |
36a |
[0, 0, 0, 0, 1] |
0 |
[6] |
| 66.a3 |
66a1 |
66.a |
66a |
[1, 0, 1, -6, 4] |
0 |
[6] |
| 66.a4 |
66a2 |
66.a |
66a |
[1, 0, 1, 4, 20] |
0 |
[6] |
| 84.b3 |
84a2 |
84.b |
84a |
[0, 1, 0, -28, -28] |
0 |
[6] |
| 84.b4 |
84a1 |
84.b |
84a |
[0, 1, 0, 7, 0] |
0 |
[6] |
| 90.a3 |
90a2 |
90.a |
90a |
[1, -1, 0, -24, 18] |
0 |
[6] |
| 90.a4 |
90a1 |
90.a |
90a |
[1, -1, 0, 6, 0] |
0 |
[6] |
| 90.b2 |
90b2 |
90.b |
90b |
[1, -1, 1, -128, 587] |
0 |
[6] |
| 90.b3 |
90b1 |
90.b |
90b |
[1, -1, 1, -8, 11] |
0 |
[6] |
| 90.c1 |
90c8 |
90.c |
90c |
[1, -1, 1, -48002, 4059929] |
0 |
[6] |
| 90.c2 |
90c7 |
90.c |
90c |
[1, -1, 1, -4082, 14681] |
0 |
[6] |
| 102.b2 |
102c1 |
102.b |
102c |
[1, 0, 1, -256, 1550] |
0 |
[6] |
| 102.b3 |
102c2 |
102.b |
102c |
[1, 0, 1, -216, 2062] |
0 |
[6] |
| 114.c3 |
114a1 |
114.c |
114a |
[1, 0, 0, -8, 0] |
0 |
[6] |
| 114.c4 |
114a2 |
114.c |
114a |
[1, 0, 0, 32, 8] |
0 |
[6] |
| 126.b1 |
126a6 |
126.b |
126a |
[1, -1, 1, -24575, 1488935] |
0 |
[6] |
| 126.b2 |
126a5 |
126.b |
126a |
[1, -1, 1, -1535, 23591] |
0 |
[6] |
| 126.b3 |
126a4 |
126.b |
126a |
[1, -1, 1, -320, 1883] |
0 |
[6] |
| 126.b6 |
126a3 |
126.b |
126a |
[1, -1, 1, 40, 155] |
0 |
[6] |
| 130.a2 |
130a1 |
130.a |
130a |
[1, 0, 1, -33, 68] |
1 |
[6] |
| 130.a3 |
130a2 |
130.a |
130a |
[1, 0, 1, -13, 156] |
1 |
[6] |
| 138.b2 |
138b2 |
138.b |
138b |
[1, 0, 1, -576, 5266] |
0 |
[6] |
| 138.b3 |
138b1 |
138.b |
138b |
[1, 0, 1, -36, 82] |
0 |
[6] |
| 156.b3 |
156b2 |
156.b |
156b |
[0, 1, 0, -148, 644] |
0 |
[6] |
| 156.b4 |
156b1 |
156.b |
156b |
[0, 1, 0, -13, -4] |
0 |
[6] |
| 170.a2 |
170b1 |
170.a |
170b |
[1, 0, 1, -2554, 49452] |
0 |
[6] |
| 170.a3 |
170b2 |
170.a |
170b |
[1, 0, 1, -2474, 52716] |
0 |
[6] |
| 180.a1 |
180a3 |
180.a |
180a |
[0, 0, 0, -372, 2761] |
0 |
[6] |
| 180.a2 |
180a4 |
180.a |
180a |
[0, 0, 0, -327, 3454] |
0 |
[6] |
| 198.b3 |
198d2 |
198.b |
198d |
[1, -1, 0, -147, -135] |
0 |
[6] |
| 198.b4 |
198d1 |
198.b |
198d |
[1, -1, 0, -87, 333] |
0 |
[6] |
| 198.d2 |
198c2 |
198.d |
198c |
[1, -1, 1, -1025, 12881] |
0 |
[6] |
| 198.d4 |
198c1 |
198.d |
198c |
[1, -1, 1, -65, 209] |
0 |
[6] |
| 198.e1 |
198b3 |
198.e |
198b |
[1, -1, 1, -725, 7661] |
0 |
[6] |
| 198.e2 |
198b4 |
198.e |
198b |
[1, -1, 1, -365, 15005] |
0 |
[6] |
| 210.b4 |
210b4 |
210.b |
210b |
[1, 0, 1, -4358, -109132] |
0 |
[6] |
| 210.b7 |
210b1 |
210.b |
210b |
[1, 0, 1, -498, 4228] |
0 |
[6] |
| 210.d2 |
210a4 |
210.d |
210a |
[1, 0, 0, -5761, 167825] |
0 |
[6] |
Next