Learn more

Refine search


Results (1-50 of 6759 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
14.a3 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -36, -70]$ \(y^2+xy+y=x^3-36x-70\)
14.a4 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -11, 12]$ \(y^2+xy+y=x^3-11x+12\)
14.a5 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1, 0]$ \(y^2+xy+y=x^3-x\)
14.a6 14.a \( 2 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, 4, -6]$ \(y^2+xy+y=x^3+4x-6\)
20.a3 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, -1, 0]$ \(y^2=x^3+x^2-x\)
20.a4 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, 4, 4]$ \(y^2=x^3+x^2+4x+4\)
30.a4 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -289, 1862]$ \(y^2+xy+y=x^3-289x+1862\)
30.a5 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -69, -194]$ \(y^2+xy+y=x^3-69x-194\)
30.a8 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, 1, 2]$ \(y^2+xy+y=x^3+x+2\)
34.a3 34.a \( 2 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -43, 105]$ \(y^2+xy=x^3-43x+105\)
34.a4 34.a \( 2 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -3, 1]$ \(y^2+xy=x^3-3x+1\)
36.a2 36.a \( 2^{2} \cdot 3^{2} \) $0$ $\Z/6\Z$ $-12$ $1$ $[0, 0, 0, -15, 22]$ \(y^2=x^3-15x+22\)
36.a4 36.a \( 2^{2} \cdot 3^{2} \) $0$ $\Z/6\Z$ $-3$ $1$ $[0, 0, 0, 0, 1]$ \(y^2=x^3+1\)
66.a3 66.a \( 2 \cdot 3 \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -6, 4]$ \(y^2+xy+y=x^3-6x+4\)
66.a4 66.a \( 2 \cdot 3 \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, 4, 20]$ \(y^2+xy+y=x^3+4x+20\)
84.b3 84.b \( 2^{2} \cdot 3 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, -28, -28]$ \(y^2=x^3+x^2-28x-28\)
84.b4 84.b \( 2^{2} \cdot 3 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, 7, 0]$ \(y^2=x^3+x^2+7x\)
90.a3 90.a \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -24, 18]$ \(y^2+xy=x^3-x^2-24x+18\)
90.a4 90.a \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, 6, 0]$ \(y^2+xy=x^3-x^2+6x\)
90.b2 90.b \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -128, 587]$ \(y^2+xy+y=x^3-x^2-128x+587\)
90.b3 90.b \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -8, 11]$ \(y^2+xy+y=x^3-x^2-8x+11\)
90.c1 90.c \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -48002, 4059929]$ \(y^2+xy+y=x^3-x^2-48002x+4059929\)
90.c2 90.c \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -4082, 14681]$ \(y^2+xy+y=x^3-x^2-4082x+14681\)
102.b2 102.b \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -256, 1550]$ \(y^2+xy+y=x^3-256x+1550\)
102.b3 102.b \( 2 \cdot 3 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -216, 2062]$ \(y^2+xy+y=x^3-216x+2062\)
114.c3 114.c \( 2 \cdot 3 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -8, 0]$ \(y^2+xy=x^3-8x\)
114.c4 114.c \( 2 \cdot 3 \cdot 19 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, 32, 8]$ \(y^2+xy=x^3+32x+8\)
126.b1 126.b \( 2 \cdot 3^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -24575, 1488935]$ \(y^2+xy+y=x^3-x^2-24575x+1488935\)
126.b2 126.b \( 2 \cdot 3^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -1535, 23591]$ \(y^2+xy+y=x^3-x^2-1535x+23591\)
126.b3 126.b \( 2 \cdot 3^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -320, 1883]$ \(y^2+xy+y=x^3-x^2-320x+1883\)
126.b6 126.b \( 2 \cdot 3^{2} \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, 40, 155]$ \(y^2+xy+y=x^3-x^2+40x+155\)
130.a2 130.a \( 2 \cdot 5 \cdot 13 \) $1$ $\Z/6\Z$ $1.170464153$ $[1, 0, 1, -33, 68]$ \(y^2+xy+y=x^3-33x+68\)
130.a3 130.a \( 2 \cdot 5 \cdot 13 \) $1$ $\Z/6\Z$ $0.585232076$ $[1, 0, 1, -13, 156]$ \(y^2+xy+y=x^3-13x+156\)
138.b2 138.b \( 2 \cdot 3 \cdot 23 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -576, 5266]$ \(y^2+xy+y=x^3-576x+5266\)
138.b3 138.b \( 2 \cdot 3 \cdot 23 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -36, 82]$ \(y^2+xy+y=x^3-36x+82\)
156.b3 156.b \( 2^{2} \cdot 3 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, -148, 644]$ \(y^2=x^3+x^2-148x+644\)
156.b4 156.b \( 2^{2} \cdot 3 \cdot 13 \) $0$ $\Z/6\Z$ $1$ $[0, 1, 0, -13, -4]$ \(y^2=x^3+x^2-13x-4\)
170.a2 170.a \( 2 \cdot 5 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -2554, 49452]$ \(y^2+xy+y=x^3-2554x+49452\)
170.a3 170.a \( 2 \cdot 5 \cdot 17 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -2474, 52716]$ \(y^2+xy+y=x^3-2474x+52716\)
180.a1 180.a \( 2^{2} \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 0, 0, -372, 2761]$ \(y^2=x^3-372x+2761\)
180.a2 180.a \( 2^{2} \cdot 3^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $[0, 0, 0, -327, 3454]$ \(y^2=x^3-327x+3454\)
198.b3 198.b \( 2 \cdot 3^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -147, -135]$ \(y^2+xy=x^3-x^2-147x-135\)
198.b4 198.b \( 2 \cdot 3^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -87, 333]$ \(y^2+xy=x^3-x^2-87x+333\)
198.d2 198.d \( 2 \cdot 3^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -1025, 12881]$ \(y^2+xy+y=x^3-x^2-1025x+12881\)
198.d4 198.d \( 2 \cdot 3^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -65, 209]$ \(y^2+xy+y=x^3-x^2-65x+209\)
198.e1 198.e \( 2 \cdot 3^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -725, 7661]$ \(y^2+xy+y=x^3-x^2-725x+7661\)
198.e2 198.e \( 2 \cdot 3^{2} \cdot 11 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 1, -365, 15005]$ \(y^2+xy+y=x^3-x^2-365x+15005\)
210.b4 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -4358, -109132]$ \(y^2+xy+y=x^3-4358x-109132\)
210.b7 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -498, 4228]$ \(y^2+xy+y=x^3-498x+4228\)
210.d2 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 0, -5761, 167825]$ \(y^2+xy=x^3-5761x+167825\)
Next   Download to