Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
14.a3 |
14a2 |
14.a |
14a |
$6$ |
$18$ |
\( 2 \cdot 7 \) |
\( 2^{3} \cdot 7^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.6, 3.24.0.1 |
2B, 3Cs.1.1 |
$1$ |
$1$ |
|
$4$ |
$2$ |
$-0.136205$ |
$4956477625/941192$ |
$[1, 0, 1, -36, -70]$ |
\(y^2+xy+y=x^3-36x-70\) |
14.a4 |
14a6 |
14.a |
14a |
$6$ |
$18$ |
\( 2 \cdot 7 \) |
\( 2 \cdot 7^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.6, 9.24.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$6$ |
$-0.685512$ |
$128787625/98$ |
$[1, 0, 1, -11, 12]$ |
\(y^2+xy+y=x^3-11x+12\) |
14.a5 |
14a4 |
14.a |
14a |
$6$ |
$18$ |
\( 2 \cdot 7 \) |
\( - 2^{2} \cdot 7 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.1, 9.24.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$3$ |
$-1.032085$ |
$-15625/28$ |
$[1, 0, 1, -1, 0]$ |
\(y^2+xy+y=x^3-x\) |
14.a6 |
14a1 |
14.a |
14a |
$6$ |
$18$ |
\( 2 \cdot 7 \) |
\( - 2^{6} \cdot 7^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.1, 3.24.0.1 |
2B, 3Cs.1.1 |
$1$ |
$1$ |
|
$5$ |
$1$ |
$-0.482779$ |
$9938375/21952$ |
$[1, 0, 1, 4, -6]$ |
\(y^2+xy+y=x^3+4x-6\) |
20.a3 |
20a2 |
20.a |
20a |
$4$ |
$6$ |
\( 2^{2} \cdot 5 \) |
\( 2^{4} \cdot 5 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.22, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$2$ |
$-0.929950$ |
$16384/5$ |
$[0, 1, 0, -1, 0]$ |
\(y^2=x^3+x^2-x\) |
20.a4 |
20a1 |
20.a |
20a |
$4$ |
$6$ |
\( 2^{2} \cdot 5 \) |
\( - 2^{8} \cdot 5^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.37, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$1$ |
$-0.583377$ |
$21296/25$ |
$[0, 1, 0, 4, 4]$ |
\(y^2=x^3+x^2+4x+4\) |
30.a4 |
30a5 |
30.a |
30a |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \) |
\( 2 \cdot 3^{3} \cdot 5^{4} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.8, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$8$ |
$0.014860$ |
$2656166199049/33750$ |
$[1, 0, 1, -289, 1862]$ |
\(y^2+xy+y=x^3-289x+1862\) |
30.a5 |
30a4 |
30.a |
30a |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \) |
\( 2 \cdot 3^{12} \cdot 5 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.7, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$8$ |
$0.014860$ |
$35578826569/5314410$ |
$[1, 0, 1, -69, -194]$ |
\(y^2+xy+y=x^3-69x-194\) |
30.a8 |
30a1 |
30.a |
30a |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.12, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$2$ |
$-0.678288$ |
$357911/2160$ |
$[1, 0, 1, 1, 2]$ |
\(y^2+xy+y=x^3+x+2\) |
34.a3 |
34a2 |
34.a |
34a |
$4$ |
$6$ |
\( 2 \cdot 17 \) |
\( 2^{3} \cdot 17^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.6, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$4$ |
$-0.369819$ |
$8805624625/2312$ |
$[1, 0, 0, -43, 105]$ |
\(y^2+xy=x^3-43x+105\) |
34.a4 |
34a1 |
34.a |
34a |
$4$ |
$6$ |
\( 2 \cdot 17 \) |
\( 2^{6} \cdot 17 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$2$ |
$-0.716393$ |
$3048625/1088$ |
$[1, 0, 0, -3, 1]$ |
\(y^2+xy=x^3-3x+1\) |
36.a2 |
36a2 |
36.a |
36a |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \) |
\( 2^{8} \cdot 3^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q(\sqrt{-3})$ |
$-12$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$2$ |
$-0.468842$ |
$54000$ |
$[0, 0, 0, -15, 22]$ |
\(y^2=x^3-15x+22\) |
36.a4 |
36a1 |
36.a |
36a |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2, 3$ |
16.192.9.83, 27.648.18.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$1$ |
$-0.815415$ |
$0$ |
$[0, 0, 0, 0, 1]$ |
\(y^2=x^3+1\) |
66.a3 |
66a1 |
66.a |
66a |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 11 \) |
\( 2^{2} \cdot 3^{3} \cdot 11 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$4$ |
$-0.659383$ |
$18609625/1188$ |
$[1, 0, 1, -6, 4]$ |
\(y^2+xy+y=x^3-6x+4\) |
66.a4 |
66a2 |
66.a |
66a |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 11 \) |
\( - 2 \cdot 3^{6} \cdot 11^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$8$ |
$-0.312809$ |
$9938375/176418$ |
$[1, 0, 1, 4, 20]$ |
\(y^2+xy+y=x^3+4x+20\) |
84.b3 |
84a2 |
84.b |
84a |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 7 \) |
\( 2^{8} \cdot 3^{6} \cdot 7 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$12$ |
$-0.134497$ |
$9826000/5103$ |
$[0, 1, 0, -28, -28]$ |
\(y^2=x^3+x^2-28x-28\) |
84.b4 |
84a1 |
84.b |
84a |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 7 \) |
\( - 2^{4} \cdot 3^{3} \cdot 7^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$6$ |
$-0.481071$ |
$2048000/1323$ |
$[0, 1, 0, 7, 0]$ |
\(y^2=x^3+x^2+7x\) |
90.a3 |
90a2 |
90.a |
90a |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
\( 2 \cdot 3^{3} \cdot 5^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$16$ |
$-0.171788$ |
$57960603/31250$ |
$[1, -1, 0, -24, 18]$ |
\(y^2+xy=x^3-x^2-24x+18\) |
90.a4 |
90a1 |
90.a |
90a |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
\( - 2^{2} \cdot 3^{3} \cdot 5^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$8$ |
$-0.518362$ |
$804357/500$ |
$[1, -1, 0, 6, 0]$ |
\(y^2+xy=x^3-x^2+6x\) |
90.b2 |
90b2 |
90.b |
90b |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
\( 2^{3} \cdot 3^{3} \cdot 5^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$16$ |
$-0.171788$ |
$8527173507/200$ |
$[1, -1, 1, -128, 587]$ |
\(y^2+xy+y=x^3-x^2-128x+587\) |
90.b3 |
90b1 |
90.b |
90b |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$8$ |
$-0.518362$ |
$-1860867/320$ |
$[1, -1, 1, -8, 11]$ |
\(y^2+xy+y=x^3-x^2-8x+11\) |
90.c1 |
90c8 |
90.c |
90c |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
\( 2^{3} \cdot 3^{10} \cdot 5^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.12.0.6, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$192$ |
$1.113472$ |
$16778985534208729/81000$ |
$[1, -1, 1, -48002, 4059929]$ |
\(y^2+xy+y=x^3-x^2-48002x+4059929\) |
90.c2 |
90c7 |
90.c |
90c |
$8$ |
$12$ |
\( 2 \cdot 3^{2} \cdot 5 \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{12} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.12.0.8, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$192$ |
$1.113472$ |
$10316097499609/5859375000$ |
$[1, -1, 1, -4082, 14681]$ |
\(y^2+xy+y=x^3-x^2-4082x+14681\) |
102.b2 |
102c1 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{6} \cdot 3^{6} \cdot 17 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$24$ |
$0.092120$ |
$1845026709625/793152$ |
$[1, 0, 1, -256, 1550]$ |
\(y^2+xy+y=x^3-256x+1550\) |
102.b3 |
102c2 |
102.b |
102c |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2^{3} \cdot 3^{12} \cdot 17^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$48$ |
$0.438694$ |
$-1107111813625/1228691592$ |
$[1, 0, 1, -216, 2062]$ |
\(y^2+xy+y=x^3-216x+2062\) |
114.c3 |
114a1 |
114.c |
114a |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 19 \) |
\( 2^{6} \cdot 3^{3} \cdot 19 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.4, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$12$ |
$-0.443804$ |
$57066625/32832$ |
$[1, 0, 0, -8, 0]$ |
\(y^2+xy=x^3-8x\) |
114.c4 |
114a2 |
114.c |
114a |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 19 \) |
\( - 2^{3} \cdot 3^{6} \cdot 19^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$24$ |
$-0.097231$ |
$3616805375/2105352$ |
$[1, 0, 0, 32, 8]$ |
\(y^2+xy=x^3+32x+8\) |
126.b1 |
126a6 |
126.b |
126a |
$6$ |
$18$ |
\( 2 \cdot 3^{2} \cdot 7 \) |
\( 2^{9} \cdot 3^{6} \cdot 7^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.24.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$144$ |
$0.962407$ |
$2251439055699625/25088$ |
$[1, -1, 1, -24575, 1488935]$ |
\(y^2+xy+y=x^3-x^2-24575x+1488935\) |
126.b2 |
126a5 |
126.b |
126a |
$6$ |
$18$ |
\( 2 \cdot 3^{2} \cdot 7 \) |
\( - 2^{18} \cdot 3^{6} \cdot 7 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.24.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$72$ |
$0.615833$ |
$-548347731625/1835008$ |
$[1, -1, 1, -1535, 23591]$ |
\(y^2+xy+y=x^3-x^2-1535x+23591\) |
126.b3 |
126a4 |
126.b |
126a |
$6$ |
$18$ |
\( 2 \cdot 3^{2} \cdot 7 \) |
\( 2^{3} \cdot 3^{6} \cdot 7^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.24.0.1 |
2B, 3Cs.1.1 |
$1$ |
$1$ |
|
$4$ |
$48$ |
$0.413101$ |
$4956477625/941192$ |
$[1, -1, 1, -320, 1883]$ |
\(y^2+xy+y=x^3-x^2-320x+1883\) |
126.b6 |
126a3 |
126.b |
126a |
$6$ |
$18$ |
\( 2 \cdot 3^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 7^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.24.0.1 |
2B, 3Cs.1.1 |
$1$ |
$1$ |
|
$5$ |
$24$ |
$0.066527$ |
$9938375/21952$ |
$[1, -1, 1, 40, 155]$ |
\(y^2+xy+y=x^3-x^2+40x+155\) |
130.a2 |
130a1 |
130.a |
130a |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 13 \) |
\( 2^{4} \cdot 5^{3} \cdot 13 \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.21, 3.8.0.1 |
2B, 3B.1.1 |
$1.170464153$ |
$1$ |
|
$13$ |
$24$ |
$-0.318857$ |
$3803721481/26000$ |
$[1, 0, 1, -33, 68]$ |
\(y^2+xy+y=x^3-33x+68\) |
130.a3 |
130a2 |
130.a |
130a |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 13 \) |
\( - 2^{2} \cdot 5^{6} \cdot 13^{2} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
4.12.0.12, 3.8.0.1 |
2B, 3B.1.1 |
$0.585232076$ |
$1$ |
|
$20$ |
$48$ |
$0.027717$ |
$-217081801/10562500$ |
$[1, 0, 1, -13, 156]$ |
\(y^2+xy+y=x^3-13x+156\) |
138.b2 |
138b2 |
138.b |
138b |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 23 \) |
\( 2^{2} \cdot 3^{3} \cdot 23^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$32$ |
$0.146704$ |
$21081759765625/57132$ |
$[1, 0, 1, -576, 5266]$ |
\(y^2+xy+y=x^3-576x+5266\) |
138.b3 |
138b1 |
138.b |
138b |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 23 \) |
\( - 2^{4} \cdot 3^{6} \cdot 23 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$16$ |
$-0.199870$ |
$-4956477625/268272$ |
$[1, 0, 1, -36, 82]$ |
\(y^2+xy+y=x^3-36x+82\) |
156.b3 |
156b2 |
156.b |
156b |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 13 \) |
\( 2^{8} \cdot 3^{3} \cdot 13^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$24$ |
$0.030152$ |
$1409938000/4563$ |
$[0, 1, 0, -148, 644]$ |
\(y^2=x^3+x^2-148x+644\) |
156.b4 |
156b1 |
156.b |
156b |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 13 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$12$ |
$-0.316421$ |
$16384000/9477$ |
$[0, 1, 0, -13, -4]$ |
\(y^2=x^3+x^2-13x-4\) |
170.a2 |
170b1 |
170.a |
170b |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 17 \) |
\( 2^{8} \cdot 5^{2} \cdot 17^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.22, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$160$ |
$0.568171$ |
$1841373668746009/31443200$ |
$[1, 0, 1, -2554, 49452]$ |
\(y^2+xy+y=x^3-2554x+49452\) |
170.a3 |
170b2 |
170.a |
170b |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 17 \) |
\( - 2^{4} \cdot 5^{4} \cdot 17^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.37, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$320$ |
$0.914744$ |
$-1673672305534489/241375690000$ |
$[1, 0, 1, -2474, 52716]$ |
\(y^2+xy+y=x^3-2474x+52716\) |
180.a1 |
180a3 |
180.a |
180a |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$36$ |
$0.168662$ |
$488095744/125$ |
$[0, 0, 0, -372, 2761]$ |
\(y^2=x^3-372x+2761\) |
180.a2 |
180a4 |
180.a |
180a |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$72$ |
$0.515236$ |
$-20720464/15625$ |
$[0, 0, 0, -327, 3454]$ |
\(y^2=x^3-327x+3454\) |
198.b3 |
198d2 |
198.b |
198d |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{3} \cdot 11^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$64$ |
$0.280059$ |
$13060888875/7086244$ |
$[1, -1, 0, -147, -135]$ |
\(y^2+xy=x^3-x^2-147x-135\) |
198.b4 |
198d1 |
198.b |
198d |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 11 \) |
\( 2^{4} \cdot 3^{3} \cdot 11^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$32$ |
$-0.066515$ |
$2714704875/21296$ |
$[1, -1, 0, -87, 333]$ |
\(y^2+xy=x^3-x^2-87x+333\) |
198.d2 |
198c2 |
198.d |
198c |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 11 \) |
\( 2^{6} \cdot 3^{3} \cdot 11^{2} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$64$ |
$0.280059$ |
$4406910829875/7744$ |
$[1, -1, 1, -1025, 12881]$ |
\(y^2+xy+y=x^3-x^2-1025x+12881\) |
198.d4 |
198c1 |
198.d |
198c |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 11 \) |
\( 2^{12} \cdot 3^{3} \cdot 11 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$32$ |
$-0.066515$ |
$1108717875/45056$ |
$[1, -1, 1, -65, 209]$ |
\(y^2+xy+y=x^3-x^2-65x+209\) |
198.e1 |
198b3 |
198.e |
198b |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 11 \) |
\( 2^{6} \cdot 3^{7} \cdot 11^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$96$ |
$0.439229$ |
$57736239625/255552$ |
$[1, -1, 1, -725, 7661]$ |
\(y^2+xy+y=x^3-x^2-725x+7661\) |
198.e2 |
198b4 |
198.e |
198b |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 11 \) |
\( - 2^{3} \cdot 3^{8} \cdot 11^{6} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$192$ |
$0.785803$ |
$-7357983625/127552392$ |
$[1, -1, 1, -365, 15005]$ |
\(y^2+xy+y=x^3-x^2-365x+15005\) |
210.b4 |
210b4 |
210.b |
210b |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{12} \cdot 7 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
4.12.0.8, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$384$ |
$0.952959$ |
$9150443179640281/184570312500$ |
$[1, 0, 1, -4358, -109132]$ |
\(y^2+xy+y=x^3-4358x-109132\) |
210.b7 |
210b1 |
210.b |
210b |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{8} \cdot 3^{3} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.6, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$96$ |
$0.259812$ |
$13619385906841/6048000$ |
$[1, 0, 1, -498, 4228]$ |
\(y^2+xy+y=x^3-498x+4228\) |
210.d2 |
210a4 |
210.d |
210a |
$8$ |
$12$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \) |
\( 2^{3} \cdot 3^{3} \cdot 5 \cdot 7^{4} \) |
$0$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.8, 3.8.0.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$4$ |
$192$ |
$0.649720$ |
$21145699168383889/2593080$ |
$[1, 0, 0, -5761, 167825]$ |
\(y^2+xy=x^3-5761x+167825\) |