Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
11.a2 |
11a1 |
11.a |
11a |
$3$ |
$25$ |
\( 11 \) |
\( - 11^{5} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.120.0.1 |
5Cs.1.1 |
$1$ |
$1$ |
|
$4$ |
$1$ |
$-0.308010$ |
$-122023936/161051$ |
$[0, -1, 1, -10, -20]$ |
\(y^2+y=x^3-x^2-10x-20\) |
11.a3 |
11a3 |
11.a |
11a |
$3$ |
$25$ |
\( 11 \) |
\( -11 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
25.120.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$5$ |
$-1.112728$ |
$-4096/11$ |
$[0, -1, 1, 0, 0]$ |
\(y^2+y=x^3-x^2\) |
38.b2 |
38b1 |
38.b |
38b |
$2$ |
$5$ |
\( 2 \cdot 19 \) |
\( - 2^{5} \cdot 19 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$2$ |
$-0.786934$ |
$-1/608$ |
$[1, 1, 1, 0, 1]$ |
\(y^2+xy+y=x^3+x^2+1\) |
50.b3 |
50b1 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{5} \cdot 5^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.1 |
3B, 5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$2$ |
$-0.726100$ |
$-121945/32$ |
$[1, 1, 1, -3, 1]$ |
\(y^2+xy+y=x^3+x^2-3x+1\) |
50.b4 |
50b2 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.1 |
3B, 5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$6$ |
$-0.176793$ |
$46969655/32768$ |
$[1, 1, 1, 22, -9]$ |
\(y^2+xy+y=x^3+x^2+22x-9\) |
57.b2 |
57c1 |
57.b |
57c |
$2$ |
$5$ |
\( 3 \cdot 19 \) |
\( - 3^{10} \cdot 19 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$12$ |
$-0.153312$ |
$841232384/1121931$ |
$[0, 1, 1, 20, -32]$ |
\(y^2+y=x^3+x^2+20x-32\) |
58.b2 |
58b1 |
58.b |
58b |
$2$ |
$5$ |
\( 2 \cdot 29 \) |
\( - 2^{10} \cdot 29 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$4$ |
$-0.457555$ |
$13651919/29696$ |
$[1, 1, 1, 5, 9]$ |
\(y^2+xy+y=x^3+x^2+5x+9\) |
75.a2 |
75c1 |
75.a |
75c |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \) |
\( - 3^{5} \cdot 5^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$6$ |
$-0.593099$ |
$20480/243$ |
$[0, 1, 1, 2, 4]$ |
\(y^2+y=x^3+x^2+2x+4\) |
110.b2 |
110a1 |
110.b |
110a |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 11 \) |
\( - 2^{5} \cdot 5^{5} \cdot 11 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$20$ |
$-0.159643$ |
$109902239/1100000$ |
$[1, 1, 1, 10, -45]$ |
\(y^2+xy+y=x^3+x^2+10x-45\) |
118.c1 |
118b1 |
118.c |
118b |
$2$ |
$5$ |
\( 2 \cdot 59 \) |
\( - 2^{10} \cdot 59 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$12$ |
$-0.309706$ |
$-1732323601/60416$ |
$[1, 1, 1, -25, 39]$ |
\(y^2+xy+y=x^3+x^2-25x+39\) |
123.a1 |
123a1 |
123.a |
123a |
$2$ |
$5$ |
\( 3 \cdot 41 \) |
\( - 3^{5} \cdot 41 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.840521417$ |
$1$ |
|
$14$ |
$20$ |
$-0.486743$ |
$-122023936/9963$ |
$[0, 1, 1, -10, 10]$ |
\(y^2+y=x^3+x^2-10x+10\) |
155.a2 |
155a1 |
155.a |
155a |
$2$ |
$5$ |
\( 5 \cdot 31 \) |
\( - 5^{5} \cdot 31 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1.514887282$ |
$1$ |
|
$10$ |
$20$ |
$-0.356182$ |
$99897344/96875$ |
$[0, -1, 1, 10, 6]$ |
\(y^2+y=x^3-x^2+10x+6\) |
158.d2 |
158c1 |
158.d |
158c |
$2$ |
$5$ |
\( 2 \cdot 79 \) |
\( 2^{20} \cdot 79 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$48$ |
$0.337390$ |
$8194759433281/82837504$ |
$[1, 1, 1, -420, 3109]$ |
\(y^2+xy+y=x^3+x^2-420x+3109\) |
175.a1 |
175a2 |
175.a |
175a |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \) |
\( - 5^{3} \cdot 7^{5} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.664629997$ |
$1$ |
|
$14$ |
$40$ |
$0.054193$ |
$-2887553024/16807$ |
$[0, -1, 1, -148, 748]$ |
\(y^2+y=x^3-x^2-148x+748\) |
186.c2 |
186b1 |
186.c |
186b |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 31 \) |
\( - 2^{5} \cdot 3^{5} \cdot 31 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$20$ |
$-0.278378$ |
$371694959/241056$ |
$[1, 0, 0, 15, 9]$ |
\(y^2+xy=x^3+15x+9\) |
203.a2 |
203a1 |
203.a |
203a |
$2$ |
$5$ |
\( 7 \cdot 29 \) |
\( - 7^{5} \cdot 29 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$48$ |
$-0.219135$ |
$841232384/487403$ |
$[0, -1, 1, 20, -8]$ |
\(y^2+y=x^3-x^2+20x-8\) |
246.g2 |
246b1 |
246.g |
246b |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 41 \) |
\( - 2^{25} \cdot 3^{5} \cdot 41 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$300$ |
$0.890360$ |
$-592915705201/334302806016$ |
$[1, 0, 0, -175, -27847]$ |
\(y^2+xy=x^3-175x-27847\) |
286.d2 |
286d1 |
286.d |
286d |
$2$ |
$5$ |
\( 2 \cdot 11 \cdot 13 \) |
\( - 2^{5} \cdot 11^{2} \cdot 13^{5} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$120$ |
$0.446537$ |
$2427173723519/1437646496$ |
$[1, 1, 1, 280, 393]$ |
\(y^2+xy+y=x^3+x^2+280x+393\) |
302.c1 |
302a1 |
302.c |
302a |
$2$ |
$5$ |
\( 2 \cdot 151 \) |
\( - 2^{15} \cdot 151 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1.155798972$ |
$1$ |
|
$12$ |
$120$ |
$0.145106$ |
$-1345938541921/4947968$ |
$[1, 1, 1, -230, 1251]$ |
\(y^2+xy+y=x^3+x^2-230x+1251\) |
325.a2 |
325e1 |
325.a |
325e |
$2$ |
$5$ |
\( 5^{2} \cdot 13 \) |
\( 5^{2} \cdot 13^{5} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$84$ |
$0.077191$ |
$4206161920/371293$ |
$[0, -1, 1, -98, 378]$ |
\(y^2+y=x^3-x^2-98x+378\) |
366.f2 |
366b1 |
366.f |
366b |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 61 \) |
\( - 2^{5} \cdot 3^{5} \cdot 61 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$60$ |
$-0.230561$ |
$-13997521/474336$ |
$[1, 0, 0, -5, 33]$ |
\(y^2+xy=x^3-5x+33\) |
395.a1 |
395c1 |
395.a |
395c |
$2$ |
$5$ |
\( 5 \cdot 79 \) |
\( - 5^{5} \cdot 79 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$68$ |
$-0.167825$ |
$-14102327296/246875$ |
$[0, -1, 1, -50, 156]$ |
\(y^2+y=x^3-x^2-50x+156\) |
426.c2 |
426a1 |
426.c |
426a |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 71 \) |
\( - 2^{5} \cdot 3^{5} \cdot 71 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$80$ |
$-0.196473$ |
$-887503681/552096$ |
$[1, 0, 0, -20, 48]$ |
\(y^2+xy=x^3-20x+48\) |
537.a1 |
537e1 |
537.a |
537e |
$2$ |
$5$ |
\( 3 \cdot 179 \) |
\( - 3^{10} \cdot 179 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$192$ |
$0.226649$ |
$-4359504941056/10569771$ |
$[0, 1, 1, -340, 2308]$ |
\(y^2+y=x^3+x^2-340x+2308\) |
550.j1 |
550k3 |
550.j |
550k |
$3$ |
$25$ |
\( 2 \cdot 5^{2} \cdot 11 \) |
\( - 2^{25} \cdot 5^{3} \cdot 11 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.120.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$1200$ |
$1.183128$ |
$-24680042791780949/369098752$ |
$[1, 1, 1, -30328, 2020281]$ |
\(y^2+xy+y=x^3+x^2-30328x+2020281\) |
550.j3 |
550k2 |
550.j |
550k |
$3$ |
$25$ |
\( 2 \cdot 5^{2} \cdot 11 \) |
\( - 2^{5} \cdot 5^{3} \cdot 11^{5} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.120.0.1 |
5Cs.1.1 |
$1$ |
$1$ |
|
$4$ |
$240$ |
$0.378409$ |
$6761990971/5153632$ |
$[1, 1, 1, 197, 681]$ |
\(y^2+xy+y=x^3+x^2+197x+681\) |
574.i2 |
574j1 |
574.i |
574j |
$2$ |
$5$ |
\( 2 \cdot 7 \cdot 41 \) |
\( 2^{5} \cdot 7^{5} \cdot 41 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$120$ |
$0.178026$ |
$592915705201/22050784$ |
$[1, 1, 1, -175, 789]$ |
\(y^2+xy+y=x^3+x^2-175x+789\) |
606.f1 |
606f1 |
606.f |
606f |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 101 \) |
\( - 2^{5} \cdot 3^{5} \cdot 101 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$100$ |
$-0.048761$ |
$-80677568161/785376$ |
$[1, 0, 0, -90, 324]$ |
\(y^2+xy=x^3-90x+324\) |
665.a2 |
665d1 |
665.a |
665d |
$2$ |
$5$ |
\( 5 \cdot 7 \cdot 19 \) |
\( - 5^{5} \cdot 7^{5} \cdot 19^{2} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.523665501$ |
$1$ |
|
$16$ |
$600$ |
$0.653198$ |
$-1029077364736/18960396875$ |
$[0, -1, 1, -210, 6798]$ |
\(y^2+y=x^3-x^2-210x+6798\) |
710.d2 |
710d1 |
710.d |
710d |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 71 \) |
\( 2^{5} \cdot 5^{10} \cdot 71 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$720$ |
$0.709731$ |
$149222774347921/22187500000$ |
$[1, 1, 1, -1105, 11727]$ |
\(y^2+xy+y=x^3+x^2-1105x+11727\) |
786.m2 |
786m1 |
786.m |
786m |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 131 \) |
\( 2^{5} \cdot 3^{15} \cdot 131 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$840$ |
$0.823357$ |
$1076291879750641/60150618144$ |
$[1, 0, 0, -2135, 35913]$ |
\(y^2+xy=x^3-2135x+35913\) |
806.d1 |
806f1 |
806.d |
806f |
$2$ |
$5$ |
\( 2 \cdot 13 \cdot 31 \) |
\( - 2^{5} \cdot 13^{5} \cdot 31^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$1040$ |
$1.017368$ |
$-310345110881179921/11418002336$ |
$[1, 1, 1, -14105, 638919]$ |
\(y^2+xy+y=x^3+x^2-14105x+638919\) |
834.g2 |
834g1 |
834.g |
834g |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 139 \) |
\( - 2^{10} \cdot 3^{5} \cdot 139 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.800062856$ |
$1$ |
|
$16$ |
$400$ |
$0.143365$ |
$-37966934881/34587648$ |
$[1, 0, 0, -70, 356]$ |
\(y^2+xy=x^3-70x+356\) |
862.d1 |
862e1 |
862.d |
862e |
$2$ |
$5$ |
\( 2 \cdot 431 \) |
\( - 2^{20} \cdot 431 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$2.137778577$ |
$1$ |
|
$10$ |
$640$ |
$0.643229$ |
$-1646417855125441/451936256$ |
$[1, 1, 1, -2460, 45949]$ |
\(y^2+xy+y=x^3+x^2-2460x+45949\) |
874.d2 |
874e1 |
874.d |
874e |
$2$ |
$5$ |
\( 2 \cdot 19 \cdot 23 \) |
\( 2^{5} \cdot 19 \cdot 23^{5} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$2.279532663$ |
$1$ |
|
$6$ |
$400$ |
$0.532845$ |
$7623273198241/3913296544$ |
$[1, 1, 1, -410, 903]$ |
\(y^2+xy+y=x^3+x^2-410x+903\) |
885.a2 |
885d1 |
885.a |
885d |
$2$ |
$5$ |
\( 3 \cdot 5 \cdot 59 \) |
\( 3^{5} \cdot 5^{5} \cdot 59 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.745074846$ |
$1$ |
|
$16$ |
$400$ |
$0.262822$ |
$2436396322816/44803125$ |
$[0, 1, 1, -280, 1684]$ |
\(y^2+y=x^3+x^2-280x+1684\) |
890.g2 |
890g1 |
890.g |
890g |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 89 \) |
\( - 2^{5} \cdot 5^{5} \cdot 89 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1.593046193$ |
$1$ |
|
$12$ |
$200$ |
$0.012969$ |
$109902239/8900000$ |
$[1, 1, 1, 10, 147]$ |
\(y^2+xy+y=x^3+x^2+10x+147\) |
1050.r2 |
1050o1 |
1050.r |
1050o |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
\( - 2^{5} \cdot 3^{5} \cdot 5^{2} \cdot 7^{5} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$600$ |
$0.504548$ |
$46969655/130691232$ |
$[1, 0, 0, 22, -2748]$ |
\(y^2+xy=x^3+22x-2748\) |
1147.a2 |
1147b1 |
1147.a |
1147b |
$2$ |
$5$ |
\( 31 \cdot 37 \) |
\( 31^{2} \cdot 37^{5} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$2.295088086$ |
$1$ |
|
$8$ |
$3920$ |
$1.173080$ |
$2126464142970105856/66639542677$ |
$[0, -1, 1, -26790, 1696662]$ |
\(y^2+y=x^3-x^2-26790x+1696662\) |
1155.c2 |
1155n1 |
1155.c |
1155n |
$2$ |
$5$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \) |
\( - 3^{5} \cdot 5^{5} \cdot 7^{5} \cdot 11^{3} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.173250195$ |
$1$ |
|
$30$ |
$6000$ |
$1.259766$ |
$-79028701534867456/16987307596875$ |
$[0, 1, 1, -8940, 378056]$ |
\(y^2+y=x^3+x^2-8940x+378056\) |
1254.j2 |
1254k1 |
1254.j |
1254k |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 11 \cdot 19 \) |
\( - 2^{15} \cdot 3^{5} \cdot 11 \cdot 19 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$600$ |
$0.449305$ |
$46617130799/1664188416$ |
$[1, 0, 0, 75, 1953]$ |
\(y^2+xy=x^3+75x+1953\) |
1293.a2 |
1293e1 |
1293.a |
1293e |
$2$ |
$5$ |
\( 3 \cdot 431 \) |
\( 3^{15} \cdot 431 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1.682003328$ |
$1$ |
|
$10$ |
$3240$ |
$0.873261$ |
$28589738658328576/6184378917$ |
$[0, 1, 1, -6370, 193540]$ |
\(y^2+y=x^3+x^2-6370x+193540\) |
1310.c1 |
1310c1 |
1310.c |
1310c |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 131 \) |
\( - 2^{5} \cdot 5^{5} \cdot 131 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$260$ |
$0.097390$ |
$-94881210481/13100000$ |
$[1, 1, 1, -95, 357]$ |
\(y^2+xy+y=x^3+x^2-95x+357\) |
1342.b2 |
1342c2 |
1342.b |
1342c |
$3$ |
$25$ |
\( 2 \cdot 11 \cdot 61 \) |
\( 2^{5} \cdot 11^{5} \cdot 61^{5} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.120.0.1 |
5Cs.1.1 |
$1$ |
$1$ |
|
$4$ |
$16000$ |
$1.840681$ |
$733441552889589371521/4352738523915232$ |
$[1, 1, 1, -187880, -31262199]$ |
\(y^2+xy+y=x^3+x^2-187880x-31262199\) |
1342.b3 |
1342c1 |
1342.b |
1342c |
$3$ |
$25$ |
\( 2 \cdot 11 \cdot 61 \) |
\( 2^{25} \cdot 11 \cdot 61 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
25.120.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$3200$ |
$1.035963$ |
$300872095888141441/22515023872$ |
$[1, 1, 1, -13960, 629001]$ |
\(y^2+xy+y=x^3+x^2-13960x+629001\) |
1479.c1 |
1479f1 |
1479.c |
1479f |
$2$ |
$5$ |
\( 3 \cdot 17 \cdot 29 \) |
\( - 3^{5} \cdot 17^{5} \cdot 29^{2} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.890433144$ |
$1$ |
|
$10$ |
$2400$ |
$1.012213$ |
$-24737814642405376/290166236091$ |
$[0, 1, 1, -6070, 181852]$ |
\(y^2+y=x^3+x^2-6070x+181852\) |
1526.f2 |
1526e1 |
1526.f |
1526e |
$2$ |
$5$ |
\( 2 \cdot 7 \cdot 109 \) |
\( - 2^{5} \cdot 7^{5} \cdot 109 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$2.467963643$ |
$1$ |
|
$8$ |
$400$ |
$0.173113$ |
$13806727199/58622816$ |
$[1, 1, 1, 50, 363]$ |
\(y^2+xy+y=x^3+x^2+50x+363\) |
1586.c2 |
1586d1 |
1586.c |
1586d |
$2$ |
$5$ |
\( 2 \cdot 13 \cdot 61 \) |
\( - 2^{25} \cdot 13^{5} \cdot 61^{2} \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$9400$ |
$1.877352$ |
$453407867428435919/46358174206263296$ |
$[1, 1, 1, 16005, 10336393]$ |
\(y^2+xy+y=x^3+x^2+16005x+10336393\) |
1650.q1 |
1650r1 |
1650.q |
1650r |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{2} \cdot 11 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$1200$ |
$0.457815$ |
$-854307420745/20785248$ |
$[1, 0, 0, -578, 5412]$ |
\(y^2+xy=x^3-578x+5412\) |
1650.s1 |
1650s1 |
1650.s |
1650s |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 11 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$1$ |
$1$ |
|
$4$ |
$1200$ |
$0.431171$ |
$-3257444411545/2737152$ |
$[1, 0, 0, -903, 10377]$ |
\(y^2+xy=x^3-903x+10377\) |