Learn more

Refine search


Results (1-50 of 51421 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
19.a2 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -9, -15]$ \(y^2+y=x^3+x^2-9x-15\)
19.a3 19.a \( 19 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 1, 0]$ \(y^2+y=x^3+x^2+x\)
26.a2 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -5, -8]$ \(y^2+xy+y=x^3-5x-8\)
26.a3 26.a \( 2 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 0, 0]$ \(y^2+xy+y=x^3\)
27.a2 27.a \( 3^{3} \) $0$ $\Z/3\Z$ $-27$ $1$ $[0, 0, 1, -30, 63]$ \(y^2+y=x^3-30x+63\)
27.a3 27.a \( 3^{3} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 1, 0, -7]$ \(y^2+y=x^3-7\)
27.a4 27.a \( 3^{3} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 1, 0, 0]$ \(y^2+y=x^3\)
35.a2 35.a \( 5 \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -1, 0]$ \(y^2+y=x^3+x^2-x\)
35.a3 35.a \( 5 \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 9, 1]$ \(y^2+y=x^3+x^2+9x+1\)
37.b2 37.b \( 37 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -23, -50]$ \(y^2+y=x^3+x^2-23x-50\)
37.b3 37.b \( 37 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -3, 1]$ \(y^2+y=x^3+x^2-3x+1\)
38.a2 38.a \( 2 \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -16, 22]$ \(y^2+xy+y=x^3-16x+22\)
38.a3 38.a \( 2 \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 9, 90]$ \(y^2+xy+y=x^3+9x+90\)
44.a2 44.a \( 2^{2} \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, 3, -1]$ \(y^2=x^3+x^2+3x-1\)
50.a2 50.a \( 2 \cdot 5^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -76, 298]$ \(y^2+xy+y=x^3-76x+298\)
50.a3 50.a \( 2 \cdot 5^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -1, -2]$ \(y^2+xy+y=x^3-x-2\)
51.a2 51.a \( 3 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 1, -1]$ \(y^2+y=x^3+x^2+x-1\)
54.a2 54.a \( 2 \cdot 3^{3} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -3, 3]$ \(y^2+xy=x^3-x^2-3x+3\)
54.a3 54.a \( 2 \cdot 3^{3} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, 12, 8]$ \(y^2+xy=x^3-x^2+12x+8\)
54.b3 54.b \( 2 \cdot 3^{3} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 1, -1]$ \(y^2+xy+y=x^3-x^2+x-1\)
77.b1 77.b \( 7 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -89, 295]$ \(y^2+y=x^3+x^2-89x+295\)
77.b2 77.b \( 7 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -49, 600]$ \(y^2+y=x^3+x^2-49x+600\)
91.b2 91.b \( 7 \cdot 13 \) $1$ $\Z/3\Z$ $1.059245086$ $[0, 1, 1, -7, 5]$ \(y^2+y=x^3+x^2-7x+5\)
91.b3 91.b \( 7 \cdot 13 \) $1$ $\Z/3\Z$ $0.353081695$ $[0, 1, 1, 13, 42]$ \(y^2+y=x^3+x^2+13x+42\)
92.b2 92.b \( 2^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, 2, 1]$ \(y^2=x^3+x^2+2x+1\)
106.c2 106.c \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 1, 1]$ \(y^2+xy=x^3+x+1\)
106.d2 106.d \( 2 \cdot 53 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -283, -2351]$ \(y^2+xy=x^3-283x-2351\)
108.a2 108.a \( 2^{2} \cdot 3^{3} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 0, 0, 4]$ \(y^2=x^3+4\)
110.a1 110.a \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -89, 316]$ \(y^2+xy+y=x^3-89x+316\)
110.c1 110.c \( 2 \cdot 5 \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -1, 1]$ \(y^2+xy=x^3-x+1\)
116.b1 116.b \( 2^{2} \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -4, 4]$ \(y^2=x^3+x^2-4x+4\)
124.a1 124.a \( 2^{2} \cdot 31 \) $1$ $\Z/3\Z$ $0.520530693$ $[0, 1, 0, -2, 1]$ \(y^2=x^3+x^2-2x+1\)
140.a2 140.a \( 2^{2} \cdot 5 \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -5, -25]$ \(y^2=x^3+x^2-5x-25\)
142.e2 142.e \( 2 \cdot 71 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -8, 8]$ \(y^2+xy=x^3-8x+8\)
153.b1 153.b \( 3^{2} \cdot 17 \) $1$ $\Z/3\Z$ $0.338669215$ $[0, 0, 1, -534, 4752]$ \(y^2+y=x^3-534x+4752\)
158.b2 158.b \( 2 \cdot 79 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -82, -92]$ \(y^2+xy+y=x^3-82x-92\)
158.b3 158.b \( 2 \cdot 79 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -47, 118]$ \(y^2+xy+y=x^3-47x+118\)
162.a1 162.a \( 2 \cdot 3^{4} \) $1$ $\Z/3\Z$ $0.305934883$ $[1, -1, 0, -6, 8]$ \(y^2+xy=x^3-x^2-6x+8\)
162.b1 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -1077, 13877]$ \(y^2+xy=x^3-x^2-1077x+13877\)
162.b4 162.b \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, 3, -1]$ \(y^2+xy=x^3-x^2+3x-1\)
162.c2 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, -95, -697]$ \(y^2+xy+y=x^3-x^2-95x-697\)
162.c3 162.c \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, -5, 5]$ \(y^2+xy+y=x^3-x^2-5x+5\)
162.d2 162.d \( 2 \cdot 3^{4} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 4, -1]$ \(y^2+xy+y=x^3-x^2+4x-1\)
170.c1 170.c \( 2 \cdot 5 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -3, 6]$ \(y^2+xy+y=x^3-3x+6\)
170.e2 170.e \( 2 \cdot 5 \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 399, -919]$ \(y^2+xy=x^3+399x-919\)
171.b1 171.b \( 3^{2} \cdot 19 \) $1$ $\Z/3\Z$ $2.033701819$ $[0, 0, 1, -6924, 221760]$ \(y^2+y=x^3-6924x+221760\)
171.b2 171.b \( 3^{2} \cdot 19 \) $1$ $\Z/3\Z$ $0.677900606$ $[0, 0, 1, -84, 315]$ \(y^2+y=x^3-84x+315\)
172.a1 172.a \( 2^{2} \cdot 43 \) $1$ $\Z/3\Z$ $0.760139663$ $[0, 1, 0, -13, 15]$ \(y^2=x^3+x^2-13x+15\)
174.b1 174.b \( 2 \cdot 3 \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -7705, 1226492]$ \(y^2+xy+y=x^3-7705x+1226492\)
178.b2 178.b \( 2 \cdot 89 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, 6, -28]$ \(y^2+xy=x^3+6x-28\)
Next   Download to