Learn more

Refine search


Results (1-50 of 1192275 matches)

Next   There are too many results (1192275) to download.
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
14.a1 14.a \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2731, -55146]$ \(y^2+xy+y=x^3-2731x-55146\)
14.a2 14.a \( 2 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -171, -874]$ \(y^2+xy+y=x^3-171x-874\)
15.a1 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -2160, -39540]$ \(y^2+xy+y=x^3+x^2-2160x-39540\)
15.a3 15.a \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -110, -880]$ \(y^2+xy+y=x^3+x^2-110x-880\)
17.a1 17.a \( 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -91, -310]$ \(y^2+xy+y=x^3-x^2-91x-310\)
20.a1 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -41, -116]$ \(y^2=x^3+x^2-41x-116\)
20.a2 20.a \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -36, -140]$ \(y^2=x^3+x^2-36x-140\)
21.a1 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -784, -8515]$ \(y^2+xy=x^3-784x-8515\)
21.a4 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -34, -217]$ \(y^2+xy=x^3-34x-217\)
24.a1 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -384, -2772]$ \(y^2=x^3-x^2-384x-2772\)
24.a6 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 16, -180]$ \(y^2=x^3-x^2+16x-180\)
30.a1 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -5334, -150368]$ \(y^2+xy+y=x^3-5334x-150368\)
30.a2 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -454, -544]$ \(y^2+xy+y=x^3-454x-544\)
30.a7 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -14, -64]$ \(y^2+xy+y=x^3-14x-64\)
32.a1 32.a \( 2^{5} \) $0$ $\Z/2\Z$ $-16$ $1$ $[0, 0, 0, -11, -14]$ \(y^2=x^3-11x-14\)
33.a3 33.a \( 3 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -6, -9]$ \(y^2+xy=x^3+x^2-6x-9\)
33.a4 33.a \( 3 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 44, 55]$ \(y^2+xy=x^3+x^2+44x+55\)
34.a1 34.a \( 2 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -113, -329]$ \(y^2+xy=x^3-113x-329\)
34.a2 34.a \( 2 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -103, -411]$ \(y^2+xy=x^3-103x-411\)
36.a1 36.a \( 2^{2} \cdot 3^{2} \) $0$ $\Z/2\Z$ $-12$ $1$ $[0, 0, 0, -135, -594]$ \(y^2=x^3-135x-594\)
36.a3 36.a \( 2^{2} \cdot 3^{2} \) $0$ $\Z/2\Z$ $-3$ $1$ $[0, 0, 0, 0, -27]$ \(y^2=x^3-27\)
39.a1 39.a \( 3 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -69, -252]$ \(y^2+xy=x^3+x^2-69x-252\)
39.a4 39.a \( 3 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1, 0]$ \(y^2+xy=x^3+x^2+x\)
40.a1 40.a \( 2^{3} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -107, -426]$ \(y^2=x^3-107x-426\)
42.a2 42.a \( 2 \cdot 3 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -914, -10915]$ \(y^2+xy+y=x^3+x^2-914x-10915\)
42.a6 42.a \( 2 \cdot 3 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 386, 1277]$ \(y^2+xy+y=x^3+x^2+386x+1277\)
45.a1 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -19440, 1048135]$ \(y^2+xy=x^3-x^2-19440x+1048135\)
45.a3 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -990, 22765]$ \(y^2+xy=x^3-x^2-990x+22765\)
45.a4 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -720, -7259]$ \(y^2+xy=x^3-x^2-720x-7259\)
45.a7 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 0, -5]$ \(y^2+xy=x^3-x^2-5\)
45.a8 45.a \( 3^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 315, 1066]$ \(y^2+xy=x^3-x^2+315x+1066\)
46.a1 46.a \( 2 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -170, -812]$ \(y^2+xy=x^3-x^2-170x-812\)
46.a2 46.a \( 2 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -10, -12]$ \(y^2+xy=x^3-x^2-10x-12\)
48.a2 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -64, -220]$ \(y^2=x^3+x^2-64x-220\)
48.a5 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 1, 0]$ \(y^2=x^3+x^2+x\)
49.a1 49.a \( 7^{2} \) $0$ $\Z/2\Z$ $-28$ $1$ $[1, -1, 0, -1822, 30393]$ \(y^2+xy=x^3-x^2-1822x+30393\)
49.a2 49.a \( 7^{2} \) $0$ $\Z/2\Z$ $-7$ $1$ $[1, -1, 0, -107, 552]$ \(y^2+xy=x^3-x^2-107x+552\)
49.a3 49.a \( 7^{2} \) $0$ $\Z/2\Z$ $-28$ $1$ $[1, -1, 0, -37, -78]$ \(y^2+xy=x^3-x^2-37x-78\)
49.a4 49.a \( 7^{2} \) $0$ $\Z/2\Z$ $-7$ $1$ $[1, -1, 0, -2, -1]$ \(y^2+xy=x^3-x^2-2x-1\)
52.a1 52.a \( 2^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4, -3]$ \(y^2=x^3-4x-3\)
52.a2 52.a \( 2^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1, -10]$ \(y^2=x^3+x-10\)
55.a2 55.a \( 5 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -29, -52]$ \(y^2+xy=x^3-x^2-29x-52\)
55.a4 55.a \( 5 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1, 0]$ \(y^2+xy=x^3-x^2+x\)
56.a1 56.a \( 2^{3} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -299, 1990]$ \(y^2=x^3-299x+1990\)
56.a2 56.a \( 2^{3} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -59, -138]$ \(y^2=x^3-59x-138\)
56.b1 56.b \( 2^{3} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -40, -84]$ \(y^2=x^3-x^2-40x-84\)
56.b2 56.b \( 2^{3} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 0, -4]$ \(y^2=x^3-x^2-4\)
57.c3 57.c \( 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2, -1]$ \(y^2+xy+y=x^3-2x-1\)
57.c4 57.c \( 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 8, 29]$ \(y^2+xy+y=x^3+8x+29\)
62.a1 62.a \( 2 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -331, 2397]$ \(y^2+xy+y=x^3-x^2-331x+2397\)
Next   There are too many results (1192275) to download.