Learn more

Refine search


Results (1-50 of 113 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
30.a6 30.a \( 2 \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -19, 26]$ \(y^2+xy+y=x^3-19x+26\)
90.c3 90.c \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 1, -3002, 63929]$ \(y^2+xy+y=x^3-x^2-3002x+63929\)
90.c7 90.c \( 2 \cdot 3^{2} \cdot 5 \) $0$ $\Z/12\Z$ $1$ $[1, -1, 1, -122, 1721]$ \(y^2+xy+y=x^3-x^2-122x+1721\)
210.b6 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -578, 2756]$ \(y^2+xy+y=x^3-578x+2756\)
210.b8 210.b \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/12\Z$ $1$ $[1, 0, 1, 1922, 20756]$ \(y^2+xy+y=x^3+1922x+20756\)
210.d5 210.d \( 2 \cdot 3 \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -361, 2585]$ \(y^2+xy=x^3-361x+2585\)
630.f3 630.f \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 0, -24309, 1426113]$ \(y^2+xy=x^3-x^2-24309x+1426113\)
630.h2 630.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 1, -197573, 33848381]$ \(y^2+xy+y=x^3-x^2-197573x+33848381\)
2310.h5 2310.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $1.663762100$ $[1, 0, 1, -286854, 58872856]$ \(y^2+xy+y=x^3-286854x+58872856\)
2310.l5 2310.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -15753, 759256]$ \(y^2+xy+y=x^3-15753x+759256\)
2310.u7 2310.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -6411, 23985]$ \(y^2+xy=x^3-6411x+23985\)
2730.o6 2730.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -61744, 5898926]$ \(y^2+xy+y=x^3-61744x+5898926\)
2730.bd6 2730.bd \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -41405, -576975]$ \(y^2+xy=x^3-41405x-576975\)
2730.bd7 2730.bd \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/12\Z$ $1$ $[1, 0, 0, -25725, 1577457]$ \(y^2+xy=x^3-25725x+1577457\)
3570.w6 3570.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -544326, 154522980]$ \(y^2+xy=x^3-544326x+154522980\)
4290.bb5 4290.bb \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \) $1$ $\Z/12\Z$ $2.145205242$ $[1, 0, 0, -471900, 124722000]$ \(y^2+xy=x^3-471900x+124722000\)
4290.bb6 4290.bb \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $1.072602621$ $[1, 0, 0, -31900, 1610000]$ \(y^2+xy=x^3-31900x+1610000\)
4830.be6 4830.be \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -4393456, -140558080]$ \(y^2+xy=x^3-4393456x-140558080\)
5610.q7 5610.q \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -189908, -12291694]$ \(y^2+xy+y=x^3-189908x-12291694\)
6270.l5 6270.l \( 2 \cdot 3 \cdot 5 \cdot 11 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -1336508, 594587306]$ \(y^2+xy+y=x^3-1336508x+594587306\)
6630.v6 6630.v \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $2.534009439$ $[1, 0, 0, -5557266, -3547208700]$ \(y^2+xy=x^3-5557266x-3547208700\)
6630.v7 6630.v \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) $1$ $\Z/12\Z$ $1.267004719$ $[1, 0, 0, -2096146, 1124611076]$ \(y^2+xy=x^3-2096146x+1124611076\)
6930.q3 6930.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $2.550393544$ $[1, -1, 0, -2994759, 1995489513]$ \(y^2+xy=x^3-x^2-2994759x+1995489513\)
6930.z3 6930.z \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $2.022160351$ $[1, -1, 1, -455648, 94718531]$ \(y^2+xy+y=x^3-x^2-455648x+94718531\)
6930.bl2 6930.bl \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 1, -14548217, 20191955609]$ \(y^2+xy+y=x^3-x^2-14548217x+20191955609\)
8190.h2 8190.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 0, -22607145, 41378528025]$ \(y^2+xy=x^3-x^2-22607145x+41378528025\)
8190.bx1 8190.bx \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/12\Z$ $1$ $[1, -1, 1, -20391107, 35440483331]$ \(y^2+xy+y=x^3-x^2-20391107x+35440483331\)
8190.bx4 8190.bx \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 1, -1409027, 429934979]$ \(y^2+xy+y=x^3-x^2-1409027x+429934979\)
10710.n4 10710.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $3.123974337$ $[1, -1, 0, -9156294, 4087006308]$ \(y^2+xy=x^3-x^2-9156294x+4087006308\)
12870.c2 12870.c \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 0, -8225100, 9078652800]$ \(y^2+xy=x^3-x^2-8225100x+9078652800\)
14490.z2 14490.z \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $7.270851926$ $[1, -1, 0, -2245670064, 40961041011648]$ \(y^2+xy=x^3-x^2-2245670064x+40961041011648\)
16830.bk3 16830.bk \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 1, -113195543, 463573200431]$ \(y^2+xy+y=x^3-x^2-113195543x+463573200431\)
18810.p3 18810.p \( 2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $3.184275127$ $[1, -1, 1, -20320943, 8757439031]$ \(y^2+xy+y=x^3-x^2-20320943x+8757439031\)
19890.n2 19890.n \( 2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, -1, 0, -3707437554, 86888738522628]$ \(y^2+xy=x^3-x^2-3707437554x+86888738522628\)
30030.p5 30030.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $2.019797686$ $[1, 0, 1, -1840059, 959624146]$ \(y^2+xy+y=x^3-1840059x+959624146\)
30030.bt6 30030.bt \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $3.270112321$ $[1, 0, 0, -12180181, 16360637345]$ \(y^2+xy=x^3-12180181x+16360637345\)
30030.bt7 30030.bt \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) $1$ $\Z/12\Z$ $1.635056160$ $[1, 0, 0, -749461, 263897441]$ \(y^2+xy=x^3-749461x+263897441\)
39270.bg5 39270.bg \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -10357574, 12789715016]$ \(y^2+xy+y=x^3-10357574x+12789715016\)
39270.br6 39270.br \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $1.845940217$ $[1, 0, 1, -2376073528, 44530097120006]$ \(y^2+xy+y=x^3-2376073528x+44530097120006\)
39270.cp6 39270.cp \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -1054050116, -12046088636400]$ \(y^2+xy=x^3-1054050116x-12046088636400\)
43890.ct6 43890.ct \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -999296, 377303040]$ \(y^2+xy=x^3-999296x+377303040\)
46410.be6 46410.be \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $1.674159868$ $[1, 0, 1, -375973, 85217756]$ \(y^2+xy+y=x^3-375973x+85217756\)
51870.y6 51870.y \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $2.503003782$ $[1, 0, 1, -687089, -116077264]$ \(y^2+xy+y=x^3-687089x-116077264\)
51870.bd6 51870.bd \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $5.755875100$ $[1, 0, 1, -55935204, 151397748706]$ \(y^2+xy+y=x^3-55935204x+151397748706\)
53130.cs7 53130.cs \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $1.383717590$ $[1, 0, 0, -2088590, -732603900]$ \(y^2+xy=x^3-2088590x-732603900\)
62790.v6 62790.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $3.018098887$ $[1, 0, 1, -5134368, 4453877806]$ \(y^2+xy+y=x^3-5134368x+4453877806\)
62790.bu6 62790.bu \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 0, -2691000050, 53729999002500]$ \(y^2+xy=x^3-2691000050x+53729999002500\)
62790.bu7 62790.bu \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 23 \) $0$ $\Z/12\Z$ $1$ $[1, 0, 0, -167843570, 843125287812]$ \(y^2+xy=x^3-167843570x+843125287812\)
66990.bg6 66990.bg \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/6\Z$ $1$ $[1, 0, 1, -18232959, 18943242046]$ \(y^2+xy+y=x^3-18232959x+18943242046\)
67830.s4 67830.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/6\Z$ $5.290735247$ $[1, 0, 1, -181466594, 940883727476]$ \(y^2+xy+y=x^3-181466594x+940883727476\)
Next   Download to