Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
11.a1 |
11a2 |
11.a |
11a |
$3$ |
$25$ |
\( 11 \) |
\( -11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
25.120.0.3 |
5B.1.2 |
$550$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$5$ |
$0.496709$ |
$-52893159101157376/11$ |
$1.09296$ |
$16.05869$ |
$[0, -1, 1, -7820, -263580]$ |
\(y^2+y=x^3-x^2-7820x-263580\) |
5.24.0-5.a.2.2, 22.2.0.a.1, 25.120.0-25.a.2.2, 110.48.1.?, 275.600.12.?, $\ldots$ |
$[]$ |
19.a1 |
19a2 |
19.a |
19a |
$3$ |
$9$ |
\( 19 \) |
\( -19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.2 |
3B.1.2 |
$1026$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$3$ |
$0.033439$ |
$-50357871050752/19$ |
$1.10495$ |
$10.71517$ |
$[0, 1, 1, -769, -8470]$ |
\(y^2+y=x^3+x^2-769x-8470\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 38.2.0.a.1, 114.16.0.?, $\ldots$ |
$[]$ |
26.a1 |
26a2 |
26.a |
26a |
$3$ |
$9$ |
\( 2 \cdot 13 \) |
\( - 2^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$0.054386$ |
$-10730978619193/6656$ |
$1.02193$ |
$9.20911$ |
$[1, 0, 1, -460, -3830]$ |
\(y^2+xy+y=x^3-460x-3830\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 104.2.0.?, 117.72.0.?, 312.16.0.?, $\ldots$ |
$[]$ |
26.b1 |
26b2 |
26.b |
26b |
$2$ |
$7$ |
\( 2 \cdot 13 \) |
\( - 2 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.5 |
7B.1.3 |
$728$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$14$ |
$0.289794$ |
$-1064019559329/125497034$ |
$1.06269$ |
$8.55670$ |
$[1, -1, 1, -213, -1257]$ |
\(y^2+xy+y=x^3-x^2-213x-1257\) |
7.48.0-7.a.2.2, 104.2.0.?, 728.96.2.? |
$[]$ |
27.a1 |
27a2 |
27.a |
27a |
$4$ |
$27$ |
\( 3^{3} \) |
\( - 3^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-27$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.13.34 |
3B.1.2 |
|
|
|
$1$ |
$1$ |
|
$0$ |
$3$ |
$0.052148$ |
$-12288000$ |
$1.23864$ |
$8.61966$ |
$[0, 0, 1, -270, -1708]$ |
\(y^2+y=x^3-270x-1708\) |
|
$[]$ |
35.a1 |
35a2 |
35.a |
35a |
$3$ |
$9$ |
\( 5 \cdot 7 \) |
\( - 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$630$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$0.127462$ |
$-250523582464/13671875$ |
$1.02112$ |
$7.40770$ |
$[0, 1, 1, -131, -650]$ |
\(y^2+y=x^3+x^2-131x-650\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 63.72.0-63.e.2.2, 70.2.0.a.1, 210.16.0.?, $\ldots$ |
$[]$ |
37.a1 |
37a1 |
37.a |
37a |
$1$ |
$1$ |
\( 37 \) |
\( 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$74$ |
$2$ |
$0$ |
$0.051111408$ |
$1$ |
|
$10$ |
$2$ |
$-0.996542$ |
$110592/37$ |
$0.76978$ |
$3.21625$ |
$[0, 0, 1, -1, 0]$ |
\(y^2+y=x^3-x\) |
74.2.0.? |
$[(0, 0)]$ |
37.b1 |
37b2 |
37.b |
37b |
$3$ |
$9$ |
\( 37 \) |
\( 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.2 |
3B.1.2 |
$1998$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$0.222082$ |
$727057727488000/37$ |
$1.08598$ |
$9.47682$ |
$[0, 1, 1, -1873, -31833]$ |
\(y^2+y=x^3+x^2-1873x-31833\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[]$ |
38.a1 |
38a2 |
38.a |
38a |
$3$ |
$9$ |
\( 2 \cdot 19 \) |
\( - 2^{27} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.2 |
3B.1.2 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$0.485169$ |
$-69173457625/2550136832$ |
$1.05462$ |
$8.00798$ |
$[1, 0, 1, -86, -2456]$ |
\(y^2+xy+y=x^3-86x-2456\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 152.2.0.?, 171.72.0.?, $\ldots$ |
$[]$ |
38.b1 |
38b2 |
38.b |
38b |
$2$ |
$5$ |
\( 2 \cdot 19 \) |
\( - 2 \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$10$ |
$0.017785$ |
$-37966934881/4952198$ |
$0.97714$ |
$6.75262$ |
$[1, 1, 1, -70, -279]$ |
\(y^2+xy+y=x^3+x^2-70x-279\) |
5.24.0-5.a.2.2, 152.2.0.?, 760.48.1.? |
$[]$ |
43.a1 |
43a1 |
43.a |
43a |
$1$ |
$1$ |
\( 43 \) |
\( -43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$86$ |
$2$ |
$0$ |
$0.062816507$ |
$1$ |
|
$10$ |
$2$ |
$-1.004431$ |
$-4096/43$ |
$0.78068$ |
$2.99627$ |
$[0, 1, 1, 0, 0]$ |
\(y^2+y=x^3+x^2\) |
86.2.0.? |
$[(0, 0)]$ |
44.a1 |
44a2 |
44.a |
44a |
$2$ |
$3$ |
\( 2^{2} \cdot 11 \) |
\( - 2^{8} \cdot 11^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$66$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.102988$ |
$-199794688/1331$ |
$0.99506$ |
$6.51908$ |
$[0, 1, 0, -77, -289]$ |
\(y^2=x^3+x^2-77x-289\) |
3.8.0-3.a.1.1, 22.2.0.a.1, 66.16.0-66.a.1.1 |
$[]$ |
50.a1 |
50a2 |
50.a |
50a |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{3} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.2, 5.24.0.4 |
3B.1.2, 5B.1.3 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.176793$ |
$-349938025/8$ |
$1.05078$ |
$6.67457$ |
$[1, 0, 1, -126, -552]$ |
\(y^2+xy+y=x^3-126x-552\) |
3.8.0-3.a.1.1, 5.24.0-5.a.2.1, 8.2.0.a.1, 15.192.1-15.a.1.1, 24.16.0-24.a.1.6, $\ldots$ |
$[]$ |
50.a4 |
50a4 |
50.a |
50a |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.8.0.2, 5.24.0.2 |
3B.1.2, 5B.1.4 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.627926$ |
$46969655/32768$ |
$1.06296$ |
$7.80683$ |
$[1, 0, 1, 549, -2202]$ |
\(y^2+xy+y=x^3+549x-2202\) |
3.8.0-3.a.1.1, 5.24.0-5.a.1.1, 8.2.0.a.1, 15.192.1-15.a.3.2, 24.16.0-24.a.1.6, $\ldots$ |
$[]$ |
50.b1 |
50b4 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2^{3} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.3 |
3B, 5B.1.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.627926$ |
$-349938025/8$ |
$1.05078$ |
$9.14302$ |
$[1, 1, 1, -3138, -68969]$ |
\(y^2+xy+y=x^3+x^2-3138x-68969\) |
3.4.0.a.1, 5.24.0-5.a.2.2, 8.2.0.a.1, 15.192.1-15.a.1.3, 24.8.0.a.1, $\ldots$ |
$[]$ |
50.b2 |
50b3 |
50.b |
50b |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \) |
\( - 2 \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.24.0.3 |
3B, 5B.1.2 |
$120$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$10$ |
$0.078619$ |
$-25/2$ |
$1.09044$ |
$6.19870$ |
$[1, 1, 1, -13, -219]$ |
\(y^2+xy+y=x^3+x^2-13x-219\) |
3.4.0.a.1, 5.24.0-5.a.2.2, 8.2.0.a.1, 15.192.1-15.a.2.4, 24.8.0.a.1, $\ldots$ |
$[]$ |
51.a1 |
51a2 |
51.a |
51a |
$2$ |
$3$ |
\( 3 \cdot 17 \) |
\( - 3 \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$102$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.259223$ |
$-23100424192/14739$ |
$1.03897$ |
$6.06950$ |
$[0, 1, 1, -59, -196]$ |
\(y^2+y=x^3+x^2-59x-196\) |
3.8.0-3.a.1.1, 102.16.0.? |
$[]$ |
53.a1 |
53a1 |
53.a |
53a |
$1$ |
$1$ |
\( 53 \) |
\( -53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$212$ |
$2$ |
$0$ |
$0.092981484$ |
$1$ |
|
$8$ |
$2$ |
$-0.988547$ |
$3375/53$ |
$0.83211$ |
$2.86817$ |
$[1, -1, 1, 0, 0]$ |
\(y^2+xy+y=x^3-x^2\) |
212.2.0.? |
$[(0, 0)]$ |
54.a1 |
54a2 |
54.a |
54a |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \) |
\( - 2^{9} \cdot 3^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.11 |
3B.1.2 |
$72$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$0.234102$ |
$-1167051/512$ |
$1.04966$ |
$6.67312$ |
$[1, -1, 0, -123, -667]$ |
\(y^2+xy=x^3-x^2-123x-667\) |
3.8.0-3.a.1.1, 9.72.0-9.d.1.1, 24.16.0-24.d.1.7, 72.144.3.? |
$[]$ |
54.b1 |
54b2 |
54.b |
54b |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \) |
\( - 2 \cdot 3^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.12 |
3B.1.2 |
$72$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.315205$ |
$-132651/2$ |
$1.09453$ |
$5.44216$ |
$[1, -1, 1, -29, -53]$ |
\(y^2+xy+y=x^3-x^2-29x-53\) |
3.8.0-3.a.1.1, 9.72.0-9.d.2.2, 24.16.0-24.d.1.7, 72.144.3.? |
$[]$ |
57.a1 |
57a1 |
57.a |
57a |
$1$ |
$1$ |
\( 3 \cdot 19 \) |
\( - 3^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.037574592$ |
$1$ |
|
$12$ |
$4$ |
$-0.836549$ |
$-1404928/171$ |
$0.86512$ |
$3.54841$ |
$[0, -1, 1, -2, 2]$ |
\(y^2+y=x^3-x^2-2x+2\) |
38.2.0.a.1 |
$[(2, 1)]$ |
57.b1 |
57c2 |
57.b |
57c |
$2$ |
$5$ |
\( 3 \cdot 19 \) |
\( - 3^{2} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$0.651407$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$9.09587$ |
$[0, 1, 1, -4390, -113432]$ |
\(y^2+y=x^3+x^2-4390x-113432\) |
5.24.0-5.a.2.2, 38.2.0.a.1, 190.48.1.? |
$[]$ |
58.a1 |
58a1 |
58.a |
58a |
$1$ |
$1$ |
\( 2 \cdot 29 \) |
\( - 2^{2} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$116$ |
$2$ |
$0$ |
$0.042420307$ |
$1$ |
|
$12$ |
$4$ |
$-0.902228$ |
$-185193/116$ |
$0.85122$ |
$3.16780$ |
$[1, -1, 0, -1, 1]$ |
\(y^2+xy=x^3-x^2-x+1\) |
116.2.0.? |
$[(0, 1)]$ |
58.b1 |
58b2 |
58.b |
58b |
$2$ |
$5$ |
\( 2 \cdot 29 \) |
\( - 2^{2} \cdot 29^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$580$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$20$ |
$0.347164$ |
$-10418796526321/82044596$ |
$0.99481$ |
$7.38544$ |
$[1, 1, 1, -455, -3951]$ |
\(y^2+xy+y=x^3+x^2-455x-3951\) |
5.24.0-5.a.2.2, 116.2.0.?, 580.48.1.? |
$[]$ |
61.a1 |
61a1 |
61.a |
61a |
$1$ |
$1$ |
\( 61 \) |
\( -61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$244$ |
$2$ |
$0$ |
$0.079187731$ |
$1$ |
|
$8$ |
$2$ |
$-0.905458$ |
$-912673/61$ |
$0.79530$ |
$3.36508$ |
$[1, 0, 0, -2, 1]$ |
\(y^2+xy=x^3-2x+1\) |
244.2.0.? |
$[(1, 0)]$ |
67.a1 |
67a1 |
67.a |
67a |
$1$ |
$1$ |
\( 67 \) |
\( -67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5$ |
$-0.675266$ |
$-207474688/67$ |
$0.87656$ |
$4.55469$ |
$[0, 1, 1, -12, -21]$ |
\(y^2+y=x^3+x^2-12x-21\) |
134.2.0.? |
$[]$ |
75.a1 |
75c2 |
75.a |
75c |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \) |
\( - 3 \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.3 |
5B.1.2 |
$30$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.211621$ |
$-102400/3$ |
$1.04391$ |
$6.41123$ |
$[0, 1, 1, -208, -1256]$ |
\(y^2+y=x^3+x^2-208x-1256\) |
5.24.0-5.a.2.2, 6.2.0.a.1, 30.48.1-30.d.2.4 |
$[]$ |
75.c1 |
75a1 |
75.c |
75a |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \) |
\( - 3 \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$30$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.593099$ |
$-102400/3$ |
$1.04391$ |
$4.17460$ |
$[0, -1, 1, -8, -7]$ |
\(y^2+y=x^3-x^2-8x-7\) |
5.24.0-5.a.2.1, 6.2.0.a.1, 30.48.1-30.d.2.3 |
$[]$ |
75.c2 |
75a2 |
75.c |
75a |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \) |
\( - 3^{5} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$30$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.211621$ |
$20480/243$ |
$1.13104$ |
$5.96951$ |
$[0, -1, 1, 42, 443]$ |
\(y^2+y=x^3-x^2+42x+443\) |
5.24.0-5.a.1.1, 6.2.0.a.1, 30.48.1-30.d.1.3 |
$[]$ |
76.a1 |
76a1 |
76.a |
76a |
$1$ |
$1$ |
\( 2^{2} \cdot 19 \) |
\( - 2^{8} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.440931$ |
$-4194304/19$ |
$1.07903$ |
$4.80339$ |
$[0, -1, 0, -21, -31]$ |
\(y^2=x^3-x^2-21x-31\) |
38.2.0.a.1 |
$[]$ |
77.a1 |
77a1 |
77.a |
77a |
$1$ |
$1$ |
\( 7 \cdot 11 \) |
\( - 7^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$22$ |
$2$ |
$0$ |
$0.098027979$ |
$1$ |
|
$8$ |
$4$ |
$-0.786654$ |
$884736/539$ |
$1.02512$ |
$3.15232$ |
$[0, 0, 1, 2, 0]$ |
\(y^2+y=x^3+2x\) |
22.2.0.a.1 |
$[(2, 3)]$ |
77.b3 |
77b2 |
77.b |
77b |
$3$ |
$9$ |
\( 7 \cdot 11 \) |
\( - 7^{2} \cdot 11^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$1386$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$0.803613$ |
$9463555063808/115539436859$ |
$1.06593$ |
$7.56918$ |
$[0, 1, 1, 441, -15815]$ |
\(y^2+y=x^3+x^2+441x-15815\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 22.2.0.a.1, 63.72.0-63.e.2.2, 66.16.0-66.a.1.1, $\ldots$ |
$[]$ |
79.a1 |
79a1 |
79.a |
79a |
$1$ |
$1$ |
\( 79 \) |
\( 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$316$ |
$2$ |
$0$ |
$0.097664210$ |
$1$ |
|
$8$ |
$2$ |
$-0.895041$ |
$912673/79$ |
$0.78348$ |
$3.14093$ |
$[1, 1, 1, -2, 0]$ |
\(y^2+xy+y=x^3+x^2-2x\) |
316.2.0.? |
$[(0, 0)]$ |
83.a1 |
83a1 |
83.a |
83a |
$1$ |
$1$ |
\( 83 \) |
\( -83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$166$ |
$2$ |
$0$ |
$0.177292294$ |
$1$ |
|
$6$ |
$2$ |
$-0.943868$ |
$103823/83$ |
$0.77332$ |
$2.61391$ |
$[1, 1, 1, 1, 0]$ |
\(y^2+xy+y=x^3+x^2+x\) |
166.2.0.? |
$[(0, 0)]$ |
88.a1 |
88a1 |
88.a |
88a |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \) |
\( - 2^{8} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$0.040264364$ |
$1$ |
|
$14$ |
$8$ |
$-0.629211$ |
$-27648/11$ |
$0.78666$ |
$3.63960$ |
$[0, 0, 0, -4, 4]$ |
\(y^2=x^3-4x+4\) |
22.2.0.a.1 |
$[(2, 2)]$ |
89.a1 |
89a1 |
89.a |
89a |
$1$ |
$1$ |
\( 89 \) |
\( -89 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$356$ |
$2$ |
$0$ |
$0.112104881$ |
$1$ |
|
$6$ |
$2$ |
$-0.926876$ |
$-117649/89$ |
$0.86393$ |
$2.78737$ |
$[1, 1, 1, -1, 0]$ |
\(y^2+xy+y=x^3+x^2-x\) |
356.2.0.? |
$[(0, 0)]$ |
91.a1 |
91a1 |
91.a |
91a |
$1$ |
$1$ |
\( 7 \cdot 13 \) |
\( - 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.142392150$ |
$1$ |
|
$6$ |
$4$ |
$-0.936330$ |
$110592/91$ |
$0.71571$ |
$2.57459$ |
$[0, 0, 1, 1, 0]$ |
\(y^2+y=x^3+x\) |
182.2.0.? |
$[(0, 0)]$ |
91.b1 |
91b3 |
91.b |
91b |
$3$ |
$9$ |
\( 7 \cdot 13 \) |
\( - 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$1638$ |
$144$ |
$3$ |
$0.117693898$ |
$1$ |
|
$10$ |
$36$ |
$0.360104$ |
$-178643795968/524596891$ |
$1.15023$ |
$6.14356$ |
$[0, 1, 1, -117, -1245]$ |
\(y^2+y=x^3+x^2-117x-1245\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 117.72.0.?, 182.2.0.?, 546.16.0.?, $\ldots$ |
$[(15, 24)]$ |
92.a1 |
92b1 |
92.a |
92b |
$1$ |
$1$ |
\( 2^{2} \cdot 23 \) |
\( - 2^{4} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$46$ |
$2$ |
$0$ |
$0.049808397$ |
$1$ |
|
$12$ |
$6$ |
$-0.821413$ |
$-6912/23$ |
$0.66890$ |
$2.99066$ |
$[0, 0, 0, -1, 1]$ |
\(y^2=x^3-x+1\) |
46.2.0.a.1 |
$[(1, 1)]$ |
92.b1 |
92a2 |
92.b |
92a |
$2$ |
$3$ |
\( 2^{2} \cdot 23 \) |
\( - 2^{4} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$138$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.269963$ |
$-42592000/12167$ |
$0.87185$ |
$4.58690$ |
$[0, 1, 0, -18, -43]$ |
\(y^2=x^3+x^2-18x-43\) |
3.8.0-3.a.1.1, 46.2.0.a.1, 138.16.0.? |
$[]$ |
99.d1 |
99d3 |
99.d |
99d |
$3$ |
$25$ |
\( 3^{2} \cdot 11 \) |
\( - 3^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.60.0.2 |
5B.4.2 |
$1650$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$150$ |
$1.046015$ |
$-52893159101157376/11$ |
$1.09296$ |
$9.81448$ |
$[0, 0, 1, -70383, 7187035]$ |
\(y^2+y=x^3-70383x+7187035\) |
5.12.0.a.2, 15.24.0-5.a.2.1, 22.2.0.a.1, 25.60.0.a.2, 75.120.0.?, $\ldots$ |
$[]$ |
99.d2 |
99d2 |
99.d |
99d |
$3$ |
$25$ |
\( 3^{2} \cdot 11 \) |
\( - 3^{6} \cdot 11^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.60.0.1 |
5Cs.4.1 |
$1650$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.241296$ |
$-122023936/161051$ |
$1.01300$ |
$5.74511$ |
$[0, 0, 1, -93, 625]$ |
\(y^2+y=x^3-93x+625\) |
5.60.0.a.1, 15.120.0-5.a.1.1, 22.2.0.a.1, 110.120.5.?, 275.300.12.?, $\ldots$ |
$[]$ |
99.d3 |
99d1 |
99.d |
99d |
$3$ |
$25$ |
\( 3^{2} \cdot 11 \) |
\( - 3^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.60.0.1 |
5B.4.1 |
$1650$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.563422$ |
$-4096/11$ |
$0.82546$ |
$3.62111$ |
$[0, 0, 1, -3, -5]$ |
\(y^2+y=x^3-3x-5\) |
5.12.0.a.1, 15.24.0-5.a.1.1, 22.2.0.a.1, 25.60.0.a.1, 75.120.0.?, $\ldots$ |
$[]$ |
101.a1 |
101a1 |
101.a |
101a |
$1$ |
$1$ |
\( 101 \) |
\( 101 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$202$ |
$2$ |
$0$ |
$0.164703452$ |
$1$ |
|
$6$ |
$2$ |
$-0.916363$ |
$262144/101$ |
$0.83030$ |
$2.70343$ |
$[0, 1, 1, -1, -1]$ |
\(y^2+y=x^3+x^2-x-1\) |
202.2.0.? |
$[(-1, 0)]$ |
104.a1 |
104a1 |
104.a |
104a |
$1$ |
$1$ |
\( 2^{3} \cdot 13 \) |
\( - 2^{11} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$104$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8$ |
$-0.393032$ |
$-235298/13$ |
$0.96559$ |
$4.32444$ |
$[0, 1, 0, -16, -32]$ |
\(y^2=x^3+x^2-16x-32\) |
104.2.0.? |
$[]$ |
106.a1 |
106b1 |
106.a |
106b |
$1$ |
$1$ |
\( 2 \cdot 53 \) |
\( - 2^{4} \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$212$ |
$2$ |
$0$ |
$0.068912680$ |
$1$ |
|
$10$ |
$8$ |
$-0.641726$ |
$-47045881/848$ |
$1.00810$ |
$3.79490$ |
$[1, 1, 0, -7, 5]$ |
\(y^2+xy=x^3+x^2-7x+5\) |
212.2.0.? |
$[(2, 1)]$ |
106.b1 |
106d1 |
106.b |
106d |
$1$ |
$1$ |
\( 2 \cdot 53 \) |
\( - 2^{5} \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$424$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10$ |
$-0.446259$ |
$-2305199161/1696$ |
$0.90862$ |
$4.62313$ |
$[1, 1, 0, -27, -67]$ |
\(y^2+xy=x^3+x^2-27x-67\) |
424.2.0.? |
$[]$ |
106.c1 |
106a2 |
106.c |
106a |
$2$ |
$3$ |
\( 2 \cdot 53 \) |
\( - 2 \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1272$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.263907$ |
$-81182737/297754$ |
$0.92112$ |
$4.33269$ |
$[1, 0, 0, -9, -29]$ |
\(y^2+xy=x^3-9x-29\) |
3.8.0-3.a.1.1, 424.2.0.?, 1272.16.0.? |
$[]$ |
106.d1 |
106c2 |
106.d |
106c |
$2$ |
$3$ |
\( 2 \cdot 53 \) |
\( - 2^{8} \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$636$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.977397$ |
$-1646982616152408625/38112512$ |
$1.03018$ |
$8.99454$ |
$[1, 0, 0, -24603, -1487407]$ |
\(y^2+xy=x^3-24603x-1487407\) |
3.8.0-3.a.1.1, 212.2.0.?, 636.16.0.? |
$[]$ |
108.a1 |
108a2 |
108.a |
108a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
|
|
|
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.035060$ |
$0$ |
|
$4.88825$ |
$[0, 0, 0, 0, -108]$ |
\(y^2=x^3-108\) |
|
$[]$ |