Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
389.a1 |
389a1 |
389.a |
389a |
$1$ |
$1$ |
\( 389 \) |
\( 389 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.152460177$ |
$1$ |
|
$20$ |
$40$ |
$-0.795642$ |
$1404928/389$ |
$[0, 1, 1, -2, 0]$ |
\(y^2+y=x^3+x^2-2x\) |
433.a1 |
433a1 |
433.a |
433a |
$1$ |
$1$ |
\( 433 \) |
\( -433 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.224694163$ |
$1$ |
|
$16$ |
$28$ |
$-0.815220$ |
$-1/433$ |
$[1, 0, 0, 0, 1]$ |
\(y^2+xy=x^3+1\) |
446.a1 |
446d1 |
446.a |
446d |
$1$ |
$1$ |
\( 2 \cdot 223 \) |
\( 2^{2} \cdot 223 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.097343097$ |
$1$ |
|
$24$ |
$88$ |
$-0.700399$ |
$8120601/892$ |
$[1, -1, 0, -4, 4]$ |
\(y^2+xy=x^3-x^2-4x+4\) |
563.a1 |
563a1 |
563.a |
563a |
$1$ |
$1$ |
\( 563 \) |
\( -563 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.219229003$ |
$1$ |
|
$14$ |
$52$ |
$-0.571680$ |
$-374805361/563$ |
$[1, 1, 1, -15, 16]$ |
\(y^2+xy+y=x^3+x^2-15x+16\) |
571.a1 |
571b1 |
571.a |
571b |
$1$ |
$1$ |
\( 571 \) |
\( -571 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.177253140$ |
$1$ |
|
$16$ |
$48$ |
$-0.717502$ |
$-8998912/571$ |
$[0, 1, 1, -4, 2]$ |
\(y^2+y=x^3+x^2-4x+2\) |
643.a1 |
643a1 |
643.a |
643a |
$1$ |
$1$ |
\( 643 \) |
\( -643 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.229179621$ |
$1$ |
|
$14$ |
$32$ |
$-0.717735$ |
$-7189057/643$ |
$[1, 0, 0, -4, 3]$ |
\(y^2+xy=x^3-4x+3\) |
655.a1 |
655a1 |
655.a |
655a |
$1$ |
$1$ |
\( 5 \cdot 131 \) |
\( - 5^{2} \cdot 131 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.098953519$ |
$1$ |
|
$22$ |
$144$ |
$-0.518141$ |
$-242970624/3275$ |
$[0, 0, 1, -13, 18]$ |
\(y^2+y=x^3-13x+18\) |
664.a1 |
664a1 |
664.a |
664a |
$1$ |
$1$ |
\( 2^{3} \cdot 83 \) |
\( - 2^{8} \cdot 83 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.096676050$ |
$1$ |
|
$26$ |
$160$ |
$-0.466387$ |
$-148176/83$ |
$[0, 0, 0, -7, 10]$ |
\(y^2=x^3-7x+10\) |
681.a1 |
681c1 |
681.a |
681c |
$1$ |
$1$ |
\( 3 \cdot 227 \) |
\( - 3^{2} \cdot 227 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.136079688$ |
$1$ |
|
$22$ |
$96$ |
$-0.685717$ |
$-4096/2043$ |
$[0, -1, 1, 0, 2]$ |
\(y^2+y=x^3-x^2+2\) |
707.a1 |
707a1 |
707.a |
707a |
$1$ |
$1$ |
\( 7 \cdot 101 \) |
\( 7^{2} \cdot 101 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.112857456$ |
$1$ |
|
$22$ |
$104$ |
$-0.506146$ |
$207474688/4949$ |
$[0, 1, 1, -12, 12]$ |
\(y^2+y=x^3+x^2-12x+12\) |
709.a1 |
709a1 |
709.a |
709a |
$1$ |
$1$ |
\( 709 \) |
\( 709 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.258683172$ |
$1$ |
|
$16$ |
$44$ |
$-0.760408$ |
$1404928/709$ |
$[0, -1, 1, -2, 0]$ |
\(y^2+y=x^3-x^2-2x\) |
718.a1 |
718b1 |
718.a |
718b |
$1$ |
$1$ |
\( 2 \cdot 359 \) |
\( 2^{4} \cdot 359 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.169858359$ |
$1$ |
|
$20$ |
$112$ |
$-0.588549$ |
$10218313/5744$ |
$[1, 0, 1, -5, 0]$ |
\(y^2+xy+y=x^3-5x\) |
794.a1 |
794a1 |
794.a |
794a |
$1$ |
$1$ |
\( 2 \cdot 397 \) |
\( - 2^{2} \cdot 397 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.149049991$ |
$1$ |
|
$20$ |
$88$ |
$-0.688844$ |
$-1771561/1588$ |
$[1, 0, 1, -3, 2]$ |
\(y^2+xy+y=x^3-3x+2\) |
817.a1 |
817a1 |
817.a |
817a |
$1$ |
$1$ |
\( 19 \cdot 43 \) |
\( - 19^{2} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.256256382$ |
$1$ |
|
$14$ |
$56$ |
$-0.516743$ |
$32768/15523$ |
$[0, 1, 1, 1, 6]$ |
\(y^2+y=x^3+x^2+x+6\) |
916.a1 |
916c1 |
916.a |
916c |
$1$ |
$1$ |
\( 2^{2} \cdot 229 \) |
\( 2^{4} \cdot 229 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.136468199$ |
$1$ |
|
$22$ |
$132$ |
$-0.624127$ |
$442368/229$ |
$[0, 0, 0, -4, 1]$ |
\(y^2=x^3-4x+1\) |
944.a1 |
944e1 |
944.a |
944e |
$1$ |
$1$ |
\( 2^{4} \cdot 59 \) |
\( - 2^{10} \cdot 59 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.117860680$ |
$1$ |
|
$24$ |
$224$ |
$-0.335824$ |
$-740772/59$ |
$[0, 0, 0, -19, 34]$ |
\(y^2=x^3-19x+34\) |
997.a1 |
997c1 |
997.a |
997c |
$1$ |
$1$ |
\( 997 \) |
\( 997 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.249705466$ |
$1$ |
|
$16$ |
$96$ |
$-0.482781$ |
$1593413632/997$ |
$[0, -1, 1, -24, 54]$ |
\(y^2+y=x^3-x^2-24x+54\) |
997.c1 |
997b1 |
997.c |
997b |
$1$ |
$1$ |
\( 997 \) |
\( 997 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.571019259$ |
$1$ |
|
$10$ |
$48$ |
$-0.671631$ |
$16777216/997$ |
$[0, -1, 1, -5, -3]$ |
\(y^2+y=x^3-x^2-5x-3\) |
1001.a1 |
1001c1 |
1001.a |
1001c |
$1$ |
$1$ |
\( 7 \cdot 11 \cdot 13 \) |
\( - 7^{2} \cdot 11^{3} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.036010745$ |
$1$ |
|
$32$ |
$1008$ |
$0.161095$ |
$-871531204608/11022011$ |
$[0, 0, 1, -199, 1092]$ |
\(y^2+y=x^3-199x+1092\) |
1028.a1 |
1028a1 |
1028.a |
1028a |
$1$ |
$1$ |
\( 2^{2} \cdot 257 \) |
\( 2^{4} \cdot 257 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.136468233$ |
$1$ |
|
$20$ |
$132$ |
$-0.534093$ |
$7626496/257$ |
$[0, 1, 0, -10, 9]$ |
\(y^2=x^3+x^2-10x+9\) |
1034.a1 |
1034a1 |
1034.a |
1034a |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 47 \) |
\( - 2^{2} \cdot 11 \cdot 47 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.157767968$ |
$1$ |
|
$20$ |
$128$ |
$-0.552691$ |
$-169112377/2068$ |
$[1, 0, 1, -12, 14]$ |
\(y^2+xy+y=x^3-12x+14\) |
1058.a1 |
1058c2 |
1058.a |
1058c |
$2$ |
$3$ |
\( 2 \cdot 23^{2} \) |
\( - 2^{6} \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$0.206240920$ |
$1$ |
|
$20$ |
$240$ |
$-0.133320$ |
$-313994137/64$ |
$[1, 0, 1, -115, 462]$ |
\(y^2+xy+y=x^3-115x+462\) |
1058.a2 |
1058c1 |
1058.a |
1058c |
$2$ |
$3$ |
\( 2 \cdot 23^{2} \) |
\( - 2^{2} \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$0.206240920$ |
$1$ |
|
$16$ |
$80$ |
$-0.682627$ |
$23/4$ |
$[1, 0, 1, 0, 2]$ |
\(y^2+xy+y=x^3+2\) |
1070.a1 |
1070a1 |
1070.a |
1070a |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 107 \) |
\( - 2^{2} \cdot 5^{2} \cdot 107 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.087830480$ |
$1$ |
|
$26$ |
$240$ |
$-0.484061$ |
$-116930169/10700$ |
$[1, -1, 0, -10, 16]$ |
\(y^2+xy=x^3-x^2-10x+16\) |
1073.a1 |
1073a1 |
1073.a |
1073a |
$1$ |
$1$ |
\( 29 \cdot 37 \) |
\( 29^{2} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.250120597$ |
$1$ |
|
$12$ |
$128$ |
$-0.268924$ |
$10303307776/31117$ |
$[0, -1, 1, -45, 132]$ |
\(y^2+y=x^3-x^2-45x+132\) |
1077.a1 |
1077a1 |
1077.a |
1077a |
$1$ |
$1$ |
\( 3 \cdot 359 \) |
\( 3^{4} \cdot 359 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.201754913$ |
$1$ |
|
$16$ |
$144$ |
$-0.336448$ |
$2181825073/29079$ |
$[1, 1, 1, -27, 42]$ |
\(y^2+xy+y=x^3+x^2-27x+42\) |
1088.a1 |
1088j2 |
1088.a |
1088j |
$2$ |
$2$ |
\( 2^{6} \cdot 17 \) |
\( 2^{15} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$0.531665631$ |
$1$ |
|
$25$ |
$384$ |
$0.043360$ |
$941192/289$ |
$[0, 1, 0, -65, -161]$ |
\(y^2=x^3+x^2-65x-161\) |
1088.a2 |
1088j1 |
1088.a |
1088j |
$2$ |
$2$ |
\( 2^{6} \cdot 17 \) |
\( 2^{12} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$0.531665631$ |
$1$ |
|
$21$ |
$192$ |
$-0.303214$ |
$438976/17$ |
$[0, 1, 0, -25, 39]$ |
\(y^2=x^3+x^2-25x+39\) |
1094.a1 |
1094a1 |
1094.a |
1094a |
$1$ |
$1$ |
\( 2 \cdot 547 \) |
\( - 2^{2} \cdot 547 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.166108184$ |
$1$ |
|
$20$ |
$88$ |
$-0.609101$ |
$-30664297/2188$ |
$[1, 0, 1, -7, 6]$ |
\(y^2+xy+y=x^3-7x+6\) |
1102.a1 |
1102a1 |
1102.a |
1102a |
$1$ |
$1$ |
\( 2 \cdot 19 \cdot 29 \) |
\( - 2^{6} \cdot 19^{2} \cdot 29 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.148211786$ |
$1$ |
|
$18$ |
$288$ |
$-0.162938$ |
$-2845178713/670016$ |
$[1, 1, 0, -29, 61]$ |
\(y^2+xy=x^3+x^2-29x+61\) |
1126.a1 |
1126a1 |
1126.a |
1126a |
$1$ |
$1$ |
\( 2 \cdot 563 \) |
\( - 2^{4} \cdot 563 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.229392466$ |
$1$ |
|
$18$ |
$176$ |
$-0.560435$ |
$658503/9008$ |
$[1, -1, 0, 2, 4]$ |
\(y^2+xy=x^3-x^2+2x+4\) |
1132.a1 |
1132a1 |
1132.a |
1132a |
$1$ |
$1$ |
\( 2^{2} \cdot 283 \) |
\( - 2^{4} \cdot 283 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.150224255$ |
$1$ |
|
$20$ |
$120$ |
$-0.582228$ |
$-1048576/283$ |
$[0, 1, 0, -5, 4]$ |
\(y^2=x^3+x^2-5x+4\) |
1137.a1 |
1137a1 |
1137.a |
1137a |
$1$ |
$1$ |
\( 3 \cdot 379 \) |
\( - 3^{2} \cdot 379 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.198423842$ |
$1$ |
|
$16$ |
$72$ |
$-0.636436$ |
$-912673/3411$ |
$[1, 1, 1, -2, 2]$ |
\(y^2+xy+y=x^3+x^2-2x+2\) |
1141.a1 |
1141a1 |
1141.a |
1141a |
$1$ |
$1$ |
\( 7 \cdot 163 \) |
\( - 7^{5} \cdot 163 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.123412280$ |
$1$ |
|
$20$ |
$280$ |
$-0.071379$ |
$-2181825073/2739541$ |
$[1, 0, 0, -27, 94]$ |
\(y^2+xy=x^3-27x+94\) |
1143.a1 |
1143c1 |
1143.a |
1143c |
$1$ |
$1$ |
\( 3^{2} \cdot 127 \) |
\( 3^{7} \cdot 127 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.113423175$ |
$1$ |
|
$24$ |
$352$ |
$-0.191020$ |
$8998912/381$ |
$[0, 0, 1, -39, 90]$ |
\(y^2+y=x^3-39x+90\) |
1147.b1 |
1147a1 |
1147.b |
1147a |
$1$ |
$1$ |
\( 31 \cdot 37 \) |
\( 31^{2} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.291623432$ |
$1$ |
|
$14$ |
$80$ |
$-0.428352$ |
$89915392/35557$ |
$[0, -1, 1, -9, 9]$ |
\(y^2+y=x^3-x^2-9x+9\) |
1171.a1 |
1171a1 |
1171.a |
1171a |
$1$ |
$1$ |
\( 1171 \) |
\( 1171 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.336702983$ |
$1$ |
|
$14$ |
$88$ |
$-0.720388$ |
$2146689/1171$ |
$[1, -1, 1, -3, 0]$ |
\(y^2+xy+y=x^3-x^2-3x\) |
1246.a1 |
1246c1 |
1246.a |
1246c |
$1$ |
$1$ |
\( 2 \cdot 7 \cdot 89 \) |
\( - 2^{4} \cdot 7^{2} \cdot 89 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.127061335$ |
$1$ |
|
$24$ |
$320$ |
$-0.391431$ |
$-185193/69776$ |
$[1, -1, 0, -1, 13]$ |
\(y^2+xy=x^3-x^2-x+13\) |
1309.a1 |
1309b1 |
1309.a |
1309b |
$1$ |
$1$ |
\( 7 \cdot 11 \cdot 17 \) |
\( - 7^{2} \cdot 11 \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.106196687$ |
$1$ |
|
$22$ |
$256$ |
$-0.269675$ |
$-1231925248/155771$ |
$[0, -1, 1, -22, 52]$ |
\(y^2+y=x^3-x^2-22x+52\) |
1324.a1 |
1324a1 |
1324.a |
1324a |
$1$ |
$1$ |
\( 2^{2} \cdot 331 \) |
\( - 2^{4} \cdot 331 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.222923629$ |
$1$ |
|
$18$ |
$108$ |
$-0.601645$ |
$131072/331$ |
$[0, 1, 0, 3, 4]$ |
\(y^2=x^3+x^2+3x+4\) |
1325.a1 |
1325e1 |
1325.a |
1325e |
$1$ |
$1$ |
\( 5^{2} \cdot 53 \) |
\( 5^{4} \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.143609349$ |
$1$ |
|
$22$ |
$216$ |
$-0.440645$ |
$102400/53$ |
$[0, 1, 1, -8, -6]$ |
\(y^2+y=x^3+x^2-8x-6\) |
1431.a1 |
1431a1 |
1431.a |
1431a |
$1$ |
$1$ |
\( 3^{3} \cdot 53 \) |
\( 3^{9} \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.286131263$ |
$1$ |
|
$16$ |
$288$ |
$-0.147027$ |
$132651/53$ |
$[1, -1, 1, -29, -26]$ |
\(y^2+xy+y=x^3-x^2-29x-26\) |
1436.a1 |
1436a1 |
1436.a |
1436a |
$1$ |
$1$ |
\( 2^{2} \cdot 359 \) |
\( 2^{8} \cdot 359 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.227823191$ |
$1$ |
|
$18$ |
$192$ |
$-0.351953$ |
$810448/359$ |
$[0, 1, 0, -12, 4]$ |
\(y^2=x^3+x^2-12x+4\) |
1443.a1 |
1443c1 |
1443.a |
1443c |
$2$ |
$2$ |
\( 3 \cdot 13 \cdot 37 \) |
\( 3^{2} \cdot 13 \cdot 37 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$0.790463101$ |
$1$ |
|
$15$ |
$112$ |
$-0.545658$ |
$81182737/4329$ |
$[1, 1, 1, -9, 6]$ |
\(y^2+xy+y=x^3+x^2-9x+6\) |
1443.a2 |
1443c2 |
1443.a |
1443c |
$2$ |
$2$ |
\( 3 \cdot 13 \cdot 37 \) |
\( - 3 \cdot 13^{2} \cdot 37^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$0.790463101$ |
$1$ |
|
$16$ |
$224$ |
$-0.199084$ |
$23639903/694083$ |
$[1, 1, 1, 6, 42]$ |
\(y^2+xy+y=x^3+x^2+6x+42\) |
1446.a1 |
1446a1 |
1446.a |
1446a |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 241 \) |
\( - 2^{2} \cdot 3^{2} \cdot 241 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.119198913$ |
$1$ |
|
$24$ |
$192$ |
$-0.546685$ |
$-10218313/8676$ |
$[1, 1, 0, -4, 4]$ |
\(y^2+xy=x^3+x^2-4x+4\) |
1466.b1 |
1466b1 |
1466.b |
1466b |
$1$ |
$1$ |
\( 2 \cdot 733 \) |
\( 2^{10} \cdot 733 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.088731563$ |
$1$ |
|
$30$ |
$1040$ |
$-0.134249$ |
$8012006001/750592$ |
$[1, -1, 1, -42, 105]$ |
\(y^2+xy+y=x^3-x^2-42x+105\) |
1477.a1 |
1477a1 |
1477.a |
1477a |
$1$ |
$1$ |
\( 7 \cdot 211 \) |
\( - 7^{2} \cdot 211 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.210823479$ |
$1$ |
|
$18$ |
$104$ |
$-0.522107$ |
$-24137569/10339$ |
$[1, 0, 0, -6, 7]$ |
\(y^2+xy=x^3-6x+7\) |
1480.a1 |
1480a1 |
1480.a |
1480a |
$1$ |
$1$ |
\( 2^{3} \cdot 5 \cdot 37 \) |
\( 2^{8} \cdot 5^{2} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.081320491$ |
$1$ |
|
$28$ |
$448$ |
$-0.231636$ |
$9483264/925$ |
$[0, 0, 0, -28, 52]$ |
\(y^2=x^3-28x+52\) |
1483.a1 |
1483a1 |
1483.a |
1483a |
$1$ |
$1$ |
\( 1483 \) |
\( -1483 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.395288186$ |
$1$ |
|
$14$ |
$120$ |
$-0.708076$ |
$512000/1483$ |
$[0, 1, 1, 2, 2]$ |
\(y^2+y=x^3+x^2+2x+2\) |