Learn more

Refine search


Results (1-50 of 1887132 matches)

Next   There are too many results (1887132) to download.
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
37.a1 37.a \( 37 \) $1$ $\mathsf{trivial}$ $0.051111408$ $[0, 0, 1, -1, 0]$ \(y^2+y=x^3-x\)
43.a1 43.a \( 43 \) $1$ $\mathsf{trivial}$ $0.062816507$ $[0, 1, 1, 0, 0]$ \(y^2+y=x^3+x^2\)
53.a1 53.a \( 53 \) $1$ $\mathsf{trivial}$ $0.092981484$ $[1, -1, 1, 0, 0]$ \(y^2+xy+y=x^3-x^2\)
57.a1 57.a \( 3 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.037574592$ $[0, -1, 1, -2, 2]$ \(y^2+y=x^3-x^2-2x+2\)
58.a1 58.a \( 2 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.042420307$ $[1, -1, 0, -1, 1]$ \(y^2+xy=x^3-x^2-x+1\)
61.a1 61.a \( 61 \) $1$ $\mathsf{trivial}$ $0.079187731$ $[1, 0, 0, -2, 1]$ \(y^2+xy=x^3-2x+1\)
65.a1 65.a \( 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.375514098$ $[1, 0, 0, -1, 0]$ \(y^2+xy=x^3-x\)
65.a2 65.a \( 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.187757049$ $[1, 0, 0, 4, 1]$ \(y^2+xy=x^3+4x+1\)
77.a1 77.a \( 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.098027979$ $[0, 0, 1, 2, 0]$ \(y^2+y=x^3+2x\)
79.a1 79.a \( 79 \) $1$ $\mathsf{trivial}$ $0.097664210$ $[1, 1, 1, -2, 0]$ \(y^2+xy+y=x^3+x^2-2x\)
82.a1 82.a \( 2 \cdot 41 \) $1$ $\Z/2\Z$ $0.449413849$ $[1, 0, 1, -12, -16]$ \(y^2+xy+y=x^3-12x-16\)
82.a2 82.a \( 2 \cdot 41 \) $1$ $\Z/2\Z$ $0.224706924$ $[1, 0, 1, -2, 0]$ \(y^2+xy+y=x^3-2x\)
83.a1 83.a \( 83 \) $1$ $\mathsf{trivial}$ $0.177292294$ $[1, 1, 1, 1, 0]$ \(y^2+xy+y=x^3+x^2+x\)
88.a1 88.a \( 2^{3} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.040264364$ $[0, 0, 0, -4, 4]$ \(y^2=x^3-4x+4\)
89.a1 89.a \( 89 \) $1$ $\mathsf{trivial}$ $0.112104881$ $[1, 1, 1, -1, 0]$ \(y^2+xy+y=x^3+x^2-x\)
91.a1 91.a \( 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.142392150$ $[0, 0, 1, 1, 0]$ \(y^2+y=x^3+x\)
91.b1 91.b \( 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.117693898$ $[0, 1, 1, -117, -1245]$ \(y^2+y=x^3+x^2-117x-1245\)
91.b2 91.b \( 7 \cdot 13 \) $1$ $\Z/3\Z$ $1.059245086$ $[0, 1, 1, -7, 5]$ \(y^2+y=x^3+x^2-7x+5\)
91.b3 91.b \( 7 \cdot 13 \) $1$ $\Z/3\Z$ $0.353081695$ $[0, 1, 1, 13, 42]$ \(y^2+y=x^3+x^2+13x+42\)
92.a1 92.a \( 2^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.049808397$ $[0, 0, 0, -1, 1]$ \(y^2=x^3-x+1\)
99.a1 99.a \( 3^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.151285692$ $[1, -1, 1, -17, 30]$ \(y^2+xy+y=x^3-x^2-17x+30\)
99.a2 99.a \( 3^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.302571384$ $[1, -1, 1, -2, 0]$ \(y^2+xy+y=x^3-x^2-2x\)
101.a1 101.a \( 101 \) $1$ $\mathsf{trivial}$ $0.164703452$ $[0, 1, 1, -1, -1]$ \(y^2+y=x^3+x^2-x-1\)
102.a1 102.a \( 2 \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.143253892$ $[1, 1, 0, -2, 0]$ \(y^2+xy=x^3+x^2-2x\)
102.a2 102.a \( 2 \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.286507785$ $[1, 1, 0, 8, 10]$ \(y^2+xy=x^3+x^2+8x+10\)
106.a1 106.a \( 2 \cdot 53 \) $1$ $\mathsf{trivial}$ $0.068912680$ $[1, 1, 0, -7, 5]$ \(y^2+xy=x^3+x^2-7x+5\)
112.a1 112.a \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $0.119959949$ $[0, 1, 0, -40, 84]$ \(y^2=x^3+x^2-40x+84\)
112.a2 112.a \( 2^{4} \cdot 7 \) $1$ $\Z/2\Z$ $0.239919898$ $[0, 1, 0, 0, 4]$ \(y^2=x^3+x^2+4\)
117.a1 117.a \( 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.282583906$ $[1, -1, 1, -626, 6180]$ \(y^2+xy+y=x^3-x^2-626x+6180\)
117.a2 117.a \( 3^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.282583906$ $[1, -1, 1, -176, -768]$ \(y^2+xy+y=x^3-x^2-176x-768\)
117.a3 117.a \( 3^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.565167813$ $[1, -1, 1, -41, 96]$ \(y^2+xy+y=x^3-x^2-41x+96\)
117.a4 117.a \( 3^{2} \cdot 13 \) $1$ $\Z/4\Z$ $1.130335626$ $[1, -1, 1, 4, 6]$ \(y^2+xy+y=x^3-x^2+4x+6\)
118.a1 118.a \( 2 \cdot 59 \) $1$ $\mathsf{trivial}$ $0.087906195$ $[1, 1, 0, 1, 1]$ \(y^2+xy=x^3+x^2+x+1\)
121.b1 121.b \( 11^{2} \) $1$ $\mathsf{trivial}$ $-11$ $0.987636717$ $[0, -1, 1, -887, -10143]$ \(y^2+y=x^3-x^2-887x-10143\)
121.b2 121.b \( 11^{2} \) $1$ $\mathsf{trivial}$ $-11$ $0.089785156$ $[0, -1, 1, -7, 10]$ \(y^2+y=x^3-x^2-7x+10\)
122.a1 122.a \( 2 \cdot 61 \) $1$ $\mathsf{trivial}$ $0.120843215$ $[1, 0, 1, 2, 0]$ \(y^2+xy+y=x^3+2x\)
123.a1 123.a \( 3 \cdot 41 \) $1$ $\Z/5\Z$ $0.840521417$ $[0, 1, 1, -10, 10]$ \(y^2+y=x^3+x^2-10x+10\)
123.a2 123.a \( 3 \cdot 41 \) $1$ $\mathsf{trivial}$ $0.168104283$ $[0, 1, 1, 20, -890]$ \(y^2+y=x^3+x^2+20x-890\)
123.b1 123.b \( 3 \cdot 41 \) $1$ $\mathsf{trivial}$ $0.291914528$ $[0, -1, 1, 1, -1]$ \(y^2+y=x^3-x^2+x-1\)
124.a1 124.a \( 2^{2} \cdot 31 \) $1$ $\Z/3\Z$ $0.520530693$ $[0, 1, 0, -2, 1]$ \(y^2=x^3+x^2-2x+1\)
124.a2 124.a \( 2^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.173510231$ $[0, 1, 0, 18, -11]$ \(y^2=x^3+x^2+18x-11\)
128.a1 128.a \( 2^{7} \) $1$ $\Z/2\Z$ $0.216165582$ $[0, 1, 0, -9, 7]$ \(y^2=x^3+x^2-9x+7\)
128.a2 128.a \( 2^{7} \) $1$ $\Z/2\Z$ $0.432331164$ $[0, 1, 0, 1, 1]$ \(y^2=x^3+x^2+x+1\)
129.a1 129.a \( 3 \cdot 43 \) $1$ $\mathsf{trivial}$ $0.099959152$ $[0, -1, 1, -19, 39]$ \(y^2+y=x^3-x^2-19x+39\)
130.a1 130.a \( 2 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.390154717$ $[1, 0, 1, -208, -1122]$ \(y^2+xy+y=x^3-208x-1122\)
130.a2 130.a \( 2 \cdot 5 \cdot 13 \) $1$ $\Z/6\Z$ $1.170464153$ $[1, 0, 1, -33, 68]$ \(y^2+xy+y=x^3-33x+68\)
130.a3 130.a \( 2 \cdot 5 \cdot 13 \) $1$ $\Z/6\Z$ $0.585232076$ $[1, 0, 1, -13, 156]$ \(y^2+xy+y=x^3-13x+156\)
130.a4 130.a \( 2 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.195077358$ $[1, 0, 1, 112, -4194]$ \(y^2+xy+y=x^3+112x-4194\)
131.a1 131.a \( 131 \) $1$ $\mathsf{trivial}$ $0.216095198$ $[0, -1, 1, 1, 0]$ \(y^2+y=x^3-x^2+x\)
135.a1 135.a \( 3^{3} \cdot 5 \) $1$ $\mathsf{trivial}$ $0.029545685$ $[0, 0, 1, -3, 4]$ \(y^2+y=x^3-3x+4\)
Next   There are too many results (1887132) to download.