Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
37.a1 |
37a1 |
37.a |
37a |
$1$ |
$1$ |
\( 37 \) |
\( 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.051111408$ |
$1$ |
|
$10$ |
$2$ |
$-0.996542$ |
$110592/37$ |
$[0, 0, 1, -1, 0]$ |
\(y^2+y=x^3-x\) |
43.a1 |
43a1 |
43.a |
43a |
$1$ |
$1$ |
\( 43 \) |
\( -43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.062816507$ |
$1$ |
|
$10$ |
$2$ |
$-1.004431$ |
$-4096/43$ |
$[0, 1, 1, 0, 0]$ |
\(y^2+y=x^3+x^2\) |
53.a1 |
53a1 |
53.a |
53a |
$1$ |
$1$ |
\( 53 \) |
\( -53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.092981484$ |
$1$ |
|
$8$ |
$2$ |
$-0.988547$ |
$3375/53$ |
$[1, -1, 1, 0, 0]$ |
\(y^2+xy+y=x^3-x^2\) |
57.a1 |
57a1 |
57.a |
57a |
$1$ |
$1$ |
\( 3 \cdot 19 \) |
\( - 3^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.037574592$ |
$1$ |
|
$12$ |
$4$ |
$-0.836549$ |
$-1404928/171$ |
$[0, -1, 1, -2, 2]$ |
\(y^2+y=x^3-x^2-2x+2\) |
58.a1 |
58a1 |
58.a |
58a |
$1$ |
$1$ |
\( 2 \cdot 29 \) |
\( - 2^{2} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.042420307$ |
$1$ |
|
$12$ |
$4$ |
$-0.902228$ |
$-185193/116$ |
$[1, -1, 0, -1, 1]$ |
\(y^2+xy=x^3-x^2-x+1\) |
61.a1 |
61a1 |
61.a |
61a |
$1$ |
$1$ |
\( 61 \) |
\( -61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.079187731$ |
$1$ |
|
$8$ |
$2$ |
$-0.905458$ |
$-912673/61$ |
$[1, 0, 0, -2, 1]$ |
\(y^2+xy=x^3-2x+1\) |
65.a1 |
65a1 |
65.a |
65a |
$2$ |
$2$ |
\( 5 \cdot 13 \) |
\( 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.22 |
2B |
$0.375514098$ |
$1$ |
|
$7$ |
$2$ |
$-0.961616$ |
$117649/65$ |
$[1, 0, 0, -1, 0]$ |
\(y^2+xy=x^3-x\) |
65.a2 |
65a2 |
65.a |
65a |
$2$ |
$2$ |
\( 5 \cdot 13 \) |
\( - 5^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.37 |
2B |
$0.187757049$ |
$1$ |
|
$12$ |
$4$ |
$-0.615042$ |
$6967871/4225$ |
$[1, 0, 0, 4, 1]$ |
\(y^2+xy=x^3+4x+1\) |
77.a1 |
77a1 |
77.a |
77a |
$1$ |
$1$ |
\( 7 \cdot 11 \) |
\( - 7^{2} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.098027979$ |
$1$ |
|
$8$ |
$4$ |
$-0.786654$ |
$884736/539$ |
$[0, 0, 1, 2, 0]$ |
\(y^2+y=x^3+2x\) |
79.a1 |
79a1 |
79.a |
79a |
$1$ |
$1$ |
\( 79 \) |
\( 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.097664210$ |
$1$ |
|
$8$ |
$2$ |
$-0.895041$ |
$912673/79$ |
$[1, 1, 1, -2, 0]$ |
\(y^2+xy+y=x^3+x^2-2x\) |
82.a1 |
82a2 |
82.a |
82a |
$2$ |
$2$ |
\( 2 \cdot 41 \) |
\( 2 \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.6 |
2B |
$0.449413849$ |
$1$ |
|
$6$ |
$8$ |
$-0.531580$ |
$169112377/3362$ |
$[1, 0, 1, -12, -16]$ |
\(y^2+xy+y=x^3-12x-16\) |
82.a2 |
82a1 |
82.a |
82a |
$2$ |
$2$ |
\( 2 \cdot 41 \) |
\( 2^{2} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.1 |
2B |
$0.224706924$ |
$1$ |
|
$11$ |
$4$ |
$-0.878154$ |
$389017/164$ |
$[1, 0, 1, -2, 0]$ |
\(y^2+xy+y=x^3-2x\) |
83.a1 |
83a1 |
83.a |
83a |
$1$ |
$1$ |
\( 83 \) |
\( -83 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.177292294$ |
$1$ |
|
$6$ |
$2$ |
$-0.943868$ |
$103823/83$ |
$[1, 1, 1, 1, 0]$ |
\(y^2+xy+y=x^3+x^2+x\) |
88.a1 |
88a1 |
88.a |
88a |
$1$ |
$1$ |
\( 2^{3} \cdot 11 \) |
\( - 2^{8} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.040264364$ |
$1$ |
|
$14$ |
$8$ |
$-0.629211$ |
$-27648/11$ |
$[0, 0, 0, -4, 4]$ |
\(y^2=x^3-4x+4\) |
89.a1 |
89a1 |
89.a |
89a |
$1$ |
$1$ |
\( 89 \) |
\( -89 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.112104881$ |
$1$ |
|
$6$ |
$2$ |
$-0.926876$ |
$-117649/89$ |
$[1, 1, 1, -1, 0]$ |
\(y^2+xy+y=x^3+x^2-x\) |
91.a1 |
91a1 |
91.a |
91a |
$1$ |
$1$ |
\( 7 \cdot 13 \) |
\( - 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.142392150$ |
$1$ |
|
$6$ |
$4$ |
$-0.936330$ |
$110592/91$ |
$[0, 0, 1, 1, 0]$ |
\(y^2+y=x^3+x\) |
91.b1 |
91b3 |
91.b |
91b |
$3$ |
$9$ |
\( 7 \cdot 13 \) |
\( - 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$0.117693898$ |
$1$ |
|
$10$ |
$36$ |
$0.360104$ |
$-178643795968/524596891$ |
$[0, 1, 1, -117, -1245]$ |
\(y^2+y=x^3+x^2-117x-1245\) |
91.b2 |
91b1 |
91.b |
91b |
$3$ |
$9$ |
\( 7 \cdot 13 \) |
\( - 7 \cdot 13 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.1 |
3B.1.1 |
$1.059245086$ |
$1$ |
|
$6$ |
$4$ |
$-0.738508$ |
$-43614208/91$ |
$[0, 1, 1, -7, 5]$ |
\(y^2+y=x^3+x^2-7x+5\) |
91.b3 |
91b2 |
91.b |
91b |
$3$ |
$9$ |
\( 7 \cdot 13 \) |
\( - 7^{3} \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.24.0.1 |
3Cs.1.1 |
$0.353081695$ |
$1$ |
|
$10$ |
$12$ |
$-0.189202$ |
$224755712/753571$ |
$[0, 1, 1, 13, 42]$ |
\(y^2+y=x^3+x^2+13x+42\) |
92.a1 |
92b1 |
92.a |
92b |
$1$ |
$1$ |
\( 2^{2} \cdot 23 \) |
\( - 2^{4} \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.049808397$ |
$1$ |
|
$12$ |
$6$ |
$-0.821413$ |
$-6912/23$ |
$[0, 0, 0, -1, 1]$ |
\(y^2=x^3-x+1\) |
99.a1 |
99a2 |
99.a |
99a |
$2$ |
$2$ |
\( 3^{2} \cdot 11 \) |
\( 3^{3} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.151285692$ |
$1$ |
|
$10$ |
$8$ |
$-0.488690$ |
$19034163/121$ |
$[1, -1, 1, -17, 30]$ |
\(y^2+xy+y=x^3-x^2-17x+30\) |
99.a2 |
99a1 |
99.a |
99a |
$2$ |
$2$ |
\( 3^{2} \cdot 11 \) |
\( 3^{3} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.302571384$ |
$1$ |
|
$9$ |
$4$ |
$-0.835264$ |
$19683/11$ |
$[1, -1, 1, -2, 0]$ |
\(y^2+xy+y=x^3-x^2-2x\) |
101.a1 |
101a1 |
101.a |
101a |
$1$ |
$1$ |
\( 101 \) |
\( 101 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.164703452$ |
$1$ |
|
$6$ |
$2$ |
$-0.916363$ |
$262144/101$ |
$[0, 1, 1, -1, -1]$ |
\(y^2+y=x^3+x^2-x-1\) |
102.a1 |
102a1 |
102.a |
102a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.4 |
2B |
$0.143253892$ |
$1$ |
|
$15$ |
$8$ |
$-0.763528$ |
$1771561/612$ |
$[1, 1, 0, -2, 0]$ |
\(y^2+xy=x^3+x^2-2x\) |
102.a2 |
102a2 |
102.a |
102a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.5 |
2B |
$0.286507785$ |
$1$ |
|
$8$ |
$16$ |
$-0.416955$ |
$46268279/46818$ |
$[1, 1, 0, 8, 10]$ |
\(y^2+xy=x^3+x^2+8x+10\) |
106.a1 |
106b1 |
106.a |
106b |
$1$ |
$1$ |
\( 2 \cdot 53 \) |
\( - 2^{4} \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.068912680$ |
$1$ |
|
$10$ |
$8$ |
$-0.641726$ |
$-47045881/848$ |
$[1, 1, 0, -7, 5]$ |
\(y^2+xy=x^3+x^2-7x+5\) |
112.a1 |
112a2 |
112.a |
112a |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \) |
\( 2^{11} \cdot 7^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$0.119959949$ |
$1$ |
|
$15$ |
$16$ |
$-0.234669$ |
$3543122/49$ |
$[0, 1, 0, -40, 84]$ |
\(y^2=x^3+x^2-40x+84\) |
112.a2 |
112a1 |
112.a |
112a |
$2$ |
$2$ |
\( 2^{4} \cdot 7 \) |
\( - 2^{10} \cdot 7 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$0.239919898$ |
$1$ |
|
$11$ |
$8$ |
$-0.581243$ |
$-4/7$ |
$[0, 1, 0, 0, 4]$ |
\(y^2=x^3+x^2+4\) |
117.a1 |
117a4 |
117.a |
117a |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \) |
\( 3^{10} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$0.282583906$ |
$1$ |
|
$10$ |
$32$ |
$0.230940$ |
$37159393753/1053$ |
$[1, -1, 1, -626, 6180]$ |
\(y^2+xy+y=x^3-x^2-626x+6180\) |
117.a2 |
117a3 |
117.a |
117a |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \) |
\( 3^{7} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$0.282583906$ |
$1$ |
|
$10$ |
$32$ |
$0.230940$ |
$822656953/85683$ |
$[1, -1, 1, -176, -768]$ |
\(y^2+xy+y=x^3-x^2-176x-768\) |
117.a3 |
117a2 |
117.a |
117a |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \) |
\( 3^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$0.565167813$ |
$1$ |
|
$12$ |
$16$ |
$-0.115634$ |
$10218313/1521$ |
$[1, -1, 1, -41, 96]$ |
\(y^2+xy+y=x^3-x^2-41x+96\) |
117.a4 |
117a1 |
117.a |
117a |
$4$ |
$4$ |
\( 3^{2} \cdot 13 \) |
\( - 3^{7} \cdot 13 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1.130335626$ |
$1$ |
|
$11$ |
$8$ |
$-0.462207$ |
$12167/39$ |
$[1, -1, 1, 4, 6]$ |
\(y^2+xy+y=x^3-x^2+4x+6\) |
118.a1 |
118a1 |
118.a |
118a |
$1$ |
$1$ |
\( 2 \cdot 59 \) |
\( - 2^{2} \cdot 59 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.087906195$ |
$1$ |
|
$10$ |
$4$ |
$-0.864291$ |
$12167/236$ |
$[1, 1, 0, 1, 1]$ |
\(y^2+xy=x^3+x^2+x+1\) |
121.b1 |
121b2 |
121.b |
121b |
$2$ |
$11$ |
\( 11^{2} \) |
\( - 11^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-11})$ |
$-11$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$11$ |
11.120.1.10 |
11B.1.8 |
$0.987636717$ |
$1$ |
|
$4$ |
$44$ |
$0.575875$ |
$-32768$ |
$[0, -1, 1, -887, -10143]$ |
\(y^2+y=x^3-x^2-887x-10143\) |
121.b2 |
121b1 |
121.b |
121b |
$2$ |
$11$ |
\( 11^{2} \) |
\( - 11^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-11})$ |
$-11$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$11$ |
11.120.1.5 |
11B.1.3 |
$0.089785156$ |
$1$ |
|
$6$ |
$4$ |
$-0.623073$ |
$-32768$ |
$[0, -1, 1, -7, 10]$ |
\(y^2+y=x^3-x^2-7x+10\) |
122.a1 |
122a1 |
122.a |
122a |
$1$ |
$1$ |
\( 2 \cdot 61 \) |
\( - 2^{4} \cdot 61 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.120843215$ |
$1$ |
|
$10$ |
$8$ |
$-0.736916$ |
$1685159/976$ |
$[1, 0, 1, 2, 0]$ |
\(y^2+xy+y=x^3+2x\) |
123.a1 |
123a1 |
123.a |
123a |
$2$ |
$5$ |
\( 3 \cdot 41 \) |
\( - 3^{5} \cdot 41 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$0.840521417$ |
$1$ |
|
$14$ |
$20$ |
$-0.486743$ |
$-122023936/9963$ |
$[0, 1, 1, -10, 10]$ |
\(y^2+y=x^3+x^2-10x+10\) |
123.a2 |
123a2 |
123.a |
123a |
$2$ |
$5$ |
\( 3 \cdot 41 \) |
\( - 3 \cdot 41^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$0.168104283$ |
$1$ |
|
$4$ |
$100$ |
$0.317976$ |
$841232384/347568603$ |
$[0, 1, 1, 20, -890]$ |
\(y^2+y=x^3+x^2+20x-890\) |
123.b1 |
123b1 |
123.b |
123b |
$1$ |
$1$ |
\( 3 \cdot 41 \) |
\( - 3 \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.291914528$ |
$1$ |
|
$6$ |
$4$ |
$-0.916160$ |
$32768/123$ |
$[0, -1, 1, 1, -1]$ |
\(y^2+y=x^3-x^2+x-1\) |
124.a1 |
124a1 |
124.a |
124a |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \) |
\( - 2^{4} \cdot 31 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$0.520530693$ |
$1$ |
|
$10$ |
$6$ |
$-0.771762$ |
$-87808/31$ |
$[0, 1, 0, -2, 1]$ |
\(y^2=x^3+x^2-2x+1\) |
124.a2 |
124a2 |
124.a |
124a |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \) |
\( - 2^{4} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.173510231$ |
$1$ |
|
$6$ |
$18$ |
$-0.222456$ |
$38112512/29791$ |
$[0, 1, 0, 18, -11]$ |
\(y^2=x^3+x^2+18x-11\) |
128.a1 |
128a2 |
128.a |
128a |
$2$ |
$2$ |
\( 2^{7} \) |
\( 2^{13} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
32.96.0.104 |
2B |
$0.216165582$ |
$1$ |
|
$11$ |
$8$ |
$-0.509856$ |
$10976$ |
$[0, 1, 0, -9, 7]$ |
\(y^2=x^3+x^2-9x+7\) |
128.a2 |
128a1 |
128.a |
128a |
$2$ |
$2$ |
\( 2^{7} \) |
\( - 2^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
32.96.0.27 |
2B |
$0.432331164$ |
$1$ |
|
$7$ |
$4$ |
$-0.856430$ |
$128$ |
$[0, 1, 0, 1, 1]$ |
\(y^2=x^3+x^2+x+1\) |
129.a1 |
129a1 |
129.a |
129a |
$1$ |
$1$ |
\( 3 \cdot 43 \) |
\( - 3^{4} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.099959152$ |
$1$ |
|
$8$ |
$8$ |
$-0.467113$ |
$-799178752/3483$ |
$[0, -1, 1, -19, 39]$ |
\(y^2+y=x^3-x^2-19x+39\) |
130.a1 |
130a3 |
130.a |
130a |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 13 \) |
\( 2^{12} \cdot 5 \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.21, 3.8.0.2 |
2B, 3B.1.2 |
$0.390154717$ |
$1$ |
|
$7$ |
$72$ |
$0.230449$ |
$988345570681/44994560$ |
$[1, 0, 1, -208, -1122]$ |
\(y^2+xy+y=x^3-208x-1122\) |
130.a2 |
130a1 |
130.a |
130a |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 13 \) |
\( 2^{4} \cdot 5^{3} \cdot 13 \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
8.12.0.21, 3.8.0.1 |
2B, 3B.1.1 |
$1.170464153$ |
$1$ |
|
$13$ |
$24$ |
$-0.318857$ |
$3803721481/26000$ |
$[1, 0, 1, -33, 68]$ |
\(y^2+xy+y=x^3-33x+68\) |
130.a3 |
130a2 |
130.a |
130a |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 13 \) |
\( - 2^{2} \cdot 5^{6} \cdot 13^{2} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
4.12.0.12, 3.8.0.1 |
2B, 3B.1.1 |
$0.585232076$ |
$1$ |
|
$20$ |
$48$ |
$0.027717$ |
$-217081801/10562500$ |
$[1, 0, 1, -13, 156]$ |
\(y^2+xy+y=x^3-13x+156\) |
130.a4 |
130a4 |
130.a |
130a |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 13 \) |
\( - 2^{6} \cdot 5^{2} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
4.12.0.12, 3.8.0.2 |
2B, 3B.1.2 |
$0.195077358$ |
$1$ |
|
$14$ |
$144$ |
$0.577023$ |
$157376536199/7722894400$ |
$[1, 0, 1, 112, -4194]$ |
\(y^2+xy+y=x^3+112x-4194\) |
131.a1 |
131a1 |
131.a |
131a |
$1$ |
$1$ |
\( 131 \) |
\( -131 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$0.216095198$ |
$1$ |
|
$4$ |
$2$ |
$-0.911046$ |
$32768/131$ |
$[0, -1, 1, 1, 0]$ |
\(y^2+y=x^3-x^2+x\) |
135.a1 |
135a1 |
135.a |
135a |
$1$ |
$1$ |
\( 3^{3} \cdot 5 \) |
\( - 3^{5} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.029545685$ |
$1$ |
|
$14$ |
$12$ |
$-0.584727$ |
$-12288/25$ |
$[0, 0, 1, -3, 4]$ |
\(y^2+y=x^3-3x+4\) |