Curve |
Isogeny class |
|
LMFDB label |
Cremona label |
LMFDB label |
Cremona label |
Weierstrass coefficients |
Rank |
Torsion structure |
14.a6 |
14a1
|
14.a |
14a
|
$[1, 0, 1, 4, -6]$ |
$0$ |
$[6]$ |
98.a6 |
98a3
|
98.a |
98a
|
$[1, 1, 0, 220, 2192]$ |
$0$ |
$[2]$ |
112.c6 |
112c3
|
112.c |
112c
|
$[0, -1, 0, 72, 368]$ |
$0$ |
$[2]$ |
126.b6 |
126a3
|
126.b |
126a
|
$[1, -1, 1, 40, 155]$ |
$0$ |
$[6]$ |
350.f6 |
350d3
|
350.f |
350d
|
$[1, 1, 1, 112, -719]$ |
$0$ |
$[2]$ |
448.a6 |
448f3
|
448.a |
448f
|
$[0, 1, 0, 287, 3231]$ |
$0$ |
$[2]$ |
448.g6 |
448c3
|
448.g |
448c
|
$[0, -1, 0, 287, -3231]$ |
$0$ |
$[2]$ |
784.b6 |
784j3
|
784.b |
784j
|
$[0, 1, 0, 3512, -133260]$ |
$1$ |
$[2]$ |
882.i6 |
882i3
|
882.i |
882i
|
$[1, -1, 1, 1975, -57207]$ |
$0$ |
$[2]$ |
1008.h6 |
1008i3
|
1008.h |
1008i
|
$[0, 0, 0, 645, -10582]$ |
$1$ |
$[2]$ |
1694.e6 |
1694f3
|
1694.e |
1694f
|
$[1, 0, 0, 542, 8196]$ |
$1$ |
$[2]$ |
2366.j6 |
2366j3
|
2366.j |
2366j
|
$[1, 0, 0, 757, -13391]$ |
$0$ |
$[2]$ |
2450.t6 |
2450y3
|
2450.t |
2450y
|
$[1, 0, 0, 5487, 263017]$ |
$1$ |
$[2]$ |
2800.g6 |
2800v3
|
2800.g |
2800v
|
$[0, 1, 0, 1792, 49588]$ |
$1$ |
$[2]$ |
3136.e6 |
3136k3
|
3136.e |
3136k
|
$[0, 1, 0, 14047, 1080127]$ |
$0$ |
$[2]$ |
3136.z6 |
3136y3
|
3136.z |
3136y
|
$[0, -1, 0, 14047, -1080127]$ |
$1$ |
$[2]$ |
3150.i6 |
3150l3
|
3150.i |
3150l
|
$[1, -1, 0, 1008, 20416]$ |
$0$ |
$[2]$ |
4032.r6 |
4032z3
|
4032.r |
4032z
|
$[0, 0, 0, 2580, -84656]$ |
$1$ |
$[2]$ |
4032.w6 |
4032l3
|
4032.w |
4032l
|
$[0, 0, 0, 2580, 84656]$ |
$1$ |
$[2]$ |
4046.f6 |
4046b3
|
4046.f |
4046b
|
$[1, 1, 0, 1295, -29547]$ |
$1$ |
$[2]$ |
5054.c6 |
5054c3
|
5054.c |
5054c
|
$[1, 1, 1, 1617, 42677]$ |
$0$ |
$[2]$ |
7056.bd6 |
7056bp3
|
7056.bd |
7056bp
|
$[0, 0, 0, 31605, 3629626]$ |
$0$ |
$[2]$ |
7406.a6 |
7406d3
|
7406.a |
7406d
|
$[1, 0, 1, 2369, 74706]$ |
$2$ |
$[2]$ |
11200.k6 |
11200j3
|
11200.k |
11200j
|
$[0, 1, 0, 7167, -389537]$ |
$1$ |
$[2]$ |
11200.cz6 |
11200co3
|
11200.cz |
11200co
|
$[0, -1, 0, 7167, 389537]$ |
$1$ |
$[2]$ |
11774.m6 |
11774k3
|
11774.m |
11774k
|
$[1, 1, 1, 3767, -147785]$ |
$1$ |
$[2]$ |
11858.bm6 |
11858bk3
|
11858.bm |
11858bk
|
$[1, 1, 1, 26557, -2784671]$ |
$0$ |
$[2]$ |
13454.d6 |
13454d3
|
13454.d |
13454d
|
$[1, 1, 0, 4305, 184229]$ |
$1$ |
$[2]$ |
13552.w6 |
13552ba3
|
13552.w |
13552ba
|
$[0, -1, 0, 8672, -524544]$ |
$0$ |
$[2]$ |
15246.m6 |
15246i3
|
15246.m |
15246i
|
$[1, -1, 0, 4878, -221292]$ |
$1$ |
$[2]$ |
16562.bv6 |
16562bo3
|
16562.bv |
16562bo
|
$[1, 1, 1, 37092, 4630205]$ |
$1$ |
$[2]$ |
18928.bb6 |
18928z3
|
18928.bb |
18928z
|
$[0, -1, 0, 12112, 857024]$ |
$1$ |
$[2]$ |
19166.a6 |
19166a3
|
19166.a |
19166a
|
$[1, 0, 0, 6132, -309680]$ |
$1$ |
$[2]$ |
19600.dl6 |
19600cp3
|
19600.dl |
19600cp
|
$[0, -1, 0, 87792, -16833088]$ |
$1$ |
$[2]$ |
21294.q6 |
21294o3
|
21294.q |
21294o
|
$[1, -1, 0, 6813, 361557]$ |
$0$ |
$[2]$ |
22050.ba6 |
22050bi3
|
22050.ba |
22050bi
|
$[1, -1, 0, 49383, -7101459]$ |
$1$ |
$[2]$ |
23534.o6 |
23534e3
|
23534.o |
23534e
|
$[1, 1, 0, 7530, -418924]$ |
$1$ |
$[2]$ |
25200.eu6 |
25200eh3
|
25200.eu |
25200eh
|
$[0, 0, 0, 16125, -1322750]$ |
$0$ |
$[2]$ |
25886.d6 |
25886a3
|
25886.d |
25886a
|
$[1, 1, 1, 8282, 490339]$ |
$1$ |
$[2]$ |
28224.dg6 |
28224fc3
|
28224.dg |
28224fc
|
$[0, 0, 0, 126420, 29037008]$ |
$0$ |
$[2]$ |
28224.dh6 |
28224bi3
|
28224.dh |
28224bi
|
$[0, 0, 0, 126420, -29037008]$ |
$1$ |
$[2]$ |
28322.c6 |
28322h3
|
28322.c |
28322h
|
$[1, 0, 1, 63429, 10324934]$ |
$0$ |
$[2]$ |
30926.a6 |
30926f3
|
30926.a |
30926f
|
$[1, 0, 1, 9894, 636620]$ |
$1$ |
$[2]$ |
32368.f6 |
32368bd3
|
32368.f |
32368bd
|
$[0, 1, 0, 20712, 1932436]$ |
$1$ |
$[2]$ |
35378.k6 |
35378p3
|
35378.k |
35378p
|
$[1, 0, 0, 79232, -14400576]$ |
$0$ |
$[2]$ |
36414.cg6 |
36414cf3
|
36414.cg |
36414cf
|
$[1, -1, 1, 11650, 809421]$ |
$1$ |
$[2]$ |
39326.m6 |
39326l3
|
39326.m |
39326l
|
$[1, 1, 1, 12582, -906457]$ |
$1$ |
$[2]$ |
40432.b6 |
40432r3
|
40432.b |
40432r
|
$[0, 1, 0, 25872, -2679596]$ |
$1$ |
$[2]$ |
42350.bl6 |
42350bb3
|
42350.bl |
42350bb
|
$[1, 1, 0, 13550, 1024500]$ |
$1$ |
$[2]$ |
45486.m6 |
45486p3
|
45486.m |
45486p
|
$[1, -1, 0, 14553, -1137731]$ |
$0$ |
$[2]$ |