Learn more

Refine search


Results (40 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
570.e2 570.e \( 2 \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/4\Z$ $0.251630236$ $[1, 0, 1, -448, 3506]$ \(y^2+xy+y=x^3-448x+3506\)
1710.l2 1710.l \( 2 \cdot 3^{2} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.534795853$ $[1, -1, 1, -4028, -94669]$ \(y^2+xy+y=x^3-x^2-4028x-94669\)
2850.v2 2850.v \( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -11188, 438281]$ \(y^2+xy+y=x^3+x^2-11188x+438281\)
4560.q2 4560.q \( 2^{4} \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -7160, -224400]$ \(y^2=x^3-x^2-7160x-224400\)
8550.r2 8550.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -100692, -11934284]$ \(y^2+xy=x^3-x^2-100692x-11934284\)
10830.w2 10830.w \( 2 \cdot 3 \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -161555, -24372475]$ \(y^2+xy+y=x^3+x^2-161555x-24372475\)
13680.ba2 13680.ba \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -64443, 6123242]$ \(y^2=x^3-64443x+6123242\)
18240.c2 18240.c \( 2^{6} \cdot 3 \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -28641, 1823841]$ \(y^2=x^3-x^2-28641x+1823841\)
18240.cf2 18240.cf \( 2^{6} \cdot 3 \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.102502638$ $[0, 1, 0, -28641, -1823841]$ \(y^2=x^3+x^2-28641x-1823841\)
22800.cd2 22800.cd \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -179008, -28408012]$ \(y^2=x^3+x^2-179008x-28408012\)
27930.c2 27930.c \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.129603974$ $[1, 1, 0, -21928, -1224572]$ \(y^2+xy=x^3+x^2-21928x-1224572\)
32490.c2 32490.c \( 2 \cdot 3^{2} \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.164399272$ $[1, -1, 0, -1453995, 656602825]$ \(y^2+xy=x^3-x^2-1453995x+656602825\)
54150.bi2 54150.bi \( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.720476079$ $[1, 0, 1, -4038876, -3038481602]$ \(y^2+xy+y=x^3-4038876x-3038481602\)
54720.cq2 54720.cq \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -257772, -48985936]$ \(y^2=x^3-257772x-48985936\)
54720.fc2 54720.fc \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -257772, 48985936]$ \(y^2=x^3-257772x+48985936\)
68400.i2 68400.i \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $2$ $\Z/2\Z$ $5.341741283$ $[0, 0, 0, -1611075, 765405250]$ \(y^2=x^3-1611075x+765405250\)
68970.cw2 68970.cw \( 2 \cdot 3 \cdot 5 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -54150, -4720968]$ \(y^2+xy=x^3-54150x-4720968\)
83790.ft2 83790.ft \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -197357, 32866089]$ \(y^2+xy+y=x^3-x^2-197357x+32866089\)
86640.eg2 86640.eg \( 2^{4} \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/4\Z$ $3.744543997$ $[0, 1, 0, -2584880, 1554668628]$ \(y^2=x^3+x^2-2584880x+1554668628\)
91200.f2 91200.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -716033, -226548063]$ \(y^2=x^3-x^2-716033x-226548063\)
91200.jf2 91200.jf \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.401013430$ $[0, 1, 0, -716033, 226548063]$ \(y^2=x^3+x^2-716033x+226548063\)
96330.dc2 96330.dc \( 2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -75631, 7778861]$ \(y^2+xy=x^3-75631x+7778861\)
139650.he2 139650.he \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.992241809$ $[1, 0, 0, -548213, -151975083]$ \(y^2+xy=x^3-548213x-151975083\)
162450.ey2 162450.ey \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -36349880, 82039003247]$ \(y^2+xy+y=x^3-x^2-36349880x+82039003247\)
164730.n2 164730.n \( 2 \cdot 3 \cdot 5 \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.334433978$ $[1, 1, 0, -129333, 17355537]$ \(y^2+xy=x^3+x^2-129333x+17355537\)
206910.bg2 206910.bg \( 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -487350, 127466136]$ \(y^2+xy=x^3-x^2-487350x+127466136\)
223440.ff2 223440.ff \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -350856, 77670900]$ \(y^2=x^3+x^2-350856x+77670900\)
259920.dk2 259920.dk \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -23263923, -41999316878]$ \(y^2=x^3-23263923x-41999316878\)
273600.bx2 273600.bx \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.863943390$ $[0, 0, 0, -6444300, 6123242000]$ \(y^2=x^3-6444300x+6123242000\)
273600.oj2 273600.oj \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $9.223102736$ $[0, 0, 0, -6444300, -6123242000]$ \(y^2=x^3-6444300x-6123242000\)
288990.dn2 288990.dn \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -680679, -210029247]$ \(y^2+xy=x^3-x^2-680679x-210029247\)
301530.ba2 301530.ba \( 2 \cdot 3 \cdot 5 \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -236739, -43134014]$ \(y^2+xy+y=x^3-236739x-43134014\)
344850.c2 344850.c \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) $3$ $\Z/2\Z$ $11.52572084$ $[1, 1, 0, -1353750, -590121000]$ \(y^2+xy=x^3+x^2-1353750x-590121000\)
346560.cq2 346560.cq \( 2^{6} \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.220404771$ $[0, -1, 0, -10339521, 12447688545]$ \(y^2=x^3-x^2-10339521x+12447688545\)
346560.fv2 346560.fv \( 2^{6} \cdot 3 \cdot 5 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.547490798$ $[0, 1, 0, -10339521, -12447688545]$ \(y^2=x^3+x^2-10339521x-12447688545\)
418950.ho2 418950.ho \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4933917, 4103327241]$ \(y^2+xy=x^3-x^2-4933917x+4103327241\)
433200.p2 433200.p \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.407509083$ $[0, -1, 0, -64622008, 194462822512]$ \(y^2=x^3-x^2-64622008x+194462822512\)
479370.ca2 479370.ca \( 2 \cdot 3 \cdot 5 \cdot 19 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -376365, 86266647]$ \(y^2+xy+y=x^3+x^2-376365x+86266647\)
481650.g2 481650.g \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1890775, 972357625]$ \(y^2+xy=x^3+x^2-1890775x+972357625\)
494190.gg2 494190.gg \( 2 \cdot 3^{2} \cdot 5 \cdot 17^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1164002, -469763499]$ \(y^2+xy+y=x^3-x^2-1164002x-469763499\)
  Download to