Learn more

Refine search


Results (26 matches)

  Download displayed columns to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
3192.h2 3192.h \( 2^{3} \cdot 3 \cdot 7 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -952, 10780]$ \(y^2=x^3-x^2-952x+10780\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.2, 228.24.0.?, 456.48.0.?
6384.bg2 6384.bg \( 2^{4} \cdot 3 \cdot 7 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -952, -10780]$ \(y^2=x^3+x^2-952x-10780\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.1, 228.24.0.?, 456.48.0.?
9576.e2 9576.e \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -8571, -282490]$ \(y^2=x^3-8571x-282490\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.2, 76.12.0.?, $\ldots$
19152.h2 19152.h \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 19 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.121371363$ $[0, 0, 0, -8571, 282490]$ \(y^2=x^3-8571x+282490\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.1, 76.12.0.?, $\ldots$
22344.r2 22344.r \( 2^{3} \cdot 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.229049189$ $[0, 1, 0, -46664, -3604224]$ \(y^2=x^3+x^2-46664x-3604224\) 2.6.0.a.1, 8.12.0.b.1, 28.12.0-2.a.1.1, 56.24.0-8.b.1.2, 228.12.0.?, $\ldots$
25536.m2 25536.m \( 2^{6} \cdot 3 \cdot 7 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.592816329$ $[0, -1, 0, -3809, -82431]$ \(y^2=x^3-x^2-3809x-82431\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.2, 228.24.0.?, 456.48.0.?
25536.ce2 25536.ce \( 2^{6} \cdot 3 \cdot 7 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.451501679$ $[0, 1, 0, -3809, 82431]$ \(y^2=x^3+x^2-3809x+82431\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.1, 228.24.0.?, 456.48.0.?
44688.j2 44688.j \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -46664, 3604224]$ \(y^2=x^3-x^2-46664x+3604224\) 2.6.0.a.1, 8.12.0.b.1, 28.12.0-2.a.1.1, 56.24.0-8.b.1.1, 228.12.0.?, $\ldots$
60648.bm2 60648.bm \( 2^{3} \cdot 3 \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $21.98331186$ $[0, 1, 0, -343792, -71877520]$ \(y^2=x^3+x^2-343792x-71877520\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.3, 76.12.0.?, $\ldots$
67032.ci2 67032.ci \( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -419979, 96894070]$ \(y^2=x^3-419979x+96894070\) 2.6.0.a.1, 8.12.0.b.1, 84.12.0.?, 168.24.0.?, 228.12.0.?, $\ldots$
76608.ed2 76608.ed \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.328073573$ $[0, 0, 0, -34284, -2259920]$ \(y^2=x^3-34284x-2259920\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.1, 76.12.0.?, $\ldots$
76608.fd2 76608.fd \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -34284, 2259920]$ \(y^2=x^3-34284x+2259920\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.2, 76.12.0.?, $\ldots$
79800.bn2 79800.bn \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.927058340$ $[0, 1, 0, -23808, 1299888]$ \(y^2=x^3+x^2-23808x+1299888\) 2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.2, 228.12.0.?, $\ldots$
121296.bq2 121296.bq \( 2^{4} \cdot 3 \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.764780146$ $[0, -1, 0, -343792, 71877520]$ \(y^2=x^3-x^2-343792x+71877520\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.1, 24.24.0-8.b.1.3, 76.12.0.?, $\ldots$
134064.er2 134064.er \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.493662317$ $[0, 0, 0, -419979, -96894070]$ \(y^2=x^3-419979x-96894070\) 2.6.0.a.1, 8.12.0.b.1, 84.12.0.?, 168.24.0.?, 228.12.0.?, $\ldots$
159600.bq2 159600.bq \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -23808, -1299888]$ \(y^2=x^3-x^2-23808x-1299888\) 2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.1, 228.12.0.?, $\ldots$
178752.ep2 178752.ep \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $14.25370695$ $[0, -1, 0, -186657, -28647135]$ \(y^2=x^3-x^2-186657x-28647135\) 2.6.0.a.1, 8.12.0.b.1, 28.12.0-2.a.1.1, 56.24.0-8.b.1.1, 228.12.0.?, $\ldots$
178752.jd2 178752.jd \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.466148650$ $[0, 1, 0, -186657, 28647135]$ \(y^2=x^3+x^2-186657x+28647135\) 2.6.0.a.1, 8.12.0.b.1, 28.12.0-2.a.1.1, 56.24.0-8.b.1.2, 228.12.0.?, $\ldots$
181944.j2 181944.j \( 2^{3} \cdot 3^{2} \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -3094131, 1937598910]$ \(y^2=x^3-3094131x+1937598910\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.3, 228.24.0.?, 456.48.0.?
239400.ej2 239400.ej \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -214275, -35311250]$ \(y^2=x^3-214275x-35311250\) 2.6.0.a.1, 8.12.0.b.1, 60.12.0-2.a.1.1, 120.24.0.?, 228.12.0.?, $\ldots$
363888.r2 363888.r \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -3094131, -1937598910]$ \(y^2=x^3-3094131x-1937598910\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.3, 228.24.0.?, 456.48.0.?
386232.bc2 386232.bc \( 2^{3} \cdot 3 \cdot 7 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -115232, -13887300]$ \(y^2=x^3-x^2-115232x-13887300\) 2.6.0.a.1, 8.12.0.b.1, 44.12.0-2.a.1.1, 88.24.0.?, 228.12.0.?, $\ldots$
424536.h2 424536.h \( 2^{3} \cdot 3 \cdot 7^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.654076811$ $[0, -1, 0, -16845824, 24620297724]$ \(y^2=x^3-x^2-16845824x+24620297724\) 2.6.0.a.1, 8.12.0.b.1, 84.12.0.?, 168.24.0.?, 228.12.0.?, $\ldots$
478800.bj2 478800.bj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.561460715$ $[0, 0, 0, -214275, 35311250]$ \(y^2=x^3-214275x+35311250\) 2.6.0.a.1, 8.12.0.b.1, 60.12.0-2.a.1.1, 120.24.0.?, 228.12.0.?, $\ldots$
485184.q2 485184.q \( 2^{6} \cdot 3 \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -1375169, -573644991]$ \(y^2=x^3-x^2-1375169x-573644991\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.2, 24.24.0-8.b.1.4, 76.12.0.?, $\ldots$
485184.fq2 485184.fq \( 2^{6} \cdot 3 \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.482798507$ $[0, 1, 0, -1375169, 573644991]$ \(y^2=x^3+x^2-1375169x+573644991\) 2.6.0.a.1, 8.12.0.b.1, 12.12.0-2.a.1.2, 24.24.0-8.b.1.4, 76.12.0.?, $\ldots$
  Download displayed columns to