Learn more

Refine search


Results (50 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
405.c2 405.c \( 3^{4} \cdot 5 \) $1$ $\Z/3\Z$ $1.066537142$ $[0, 0, 1, -18, 29]$ \(y^2+y=x^3-18x+29\)
405.d1 405.d \( 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -162, -790]$ \(y^2+y=x^3-162x-790\)
2025.c2 2025.c \( 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.615887503$ $[0, 0, 1, -450, 3656]$ \(y^2+y=x^3-450x+3656\)
2025.d1 2025.d \( 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.048705060$ $[0, 0, 1, -4050, -98719]$ \(y^2+y=x^3-4050x-98719\)
6480.c2 6480.c \( 2^{4} \cdot 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -288, -1872]$ \(y^2=x^3-288x-1872\)
6480.o1 6480.o \( 2^{4} \cdot 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $3.041374035$ $[0, 0, 0, -2592, 50544]$ \(y^2=x^3-2592x+50544\)
19845.g1 19845.g \( 3^{4} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -7938, 270884]$ \(y^2+y=x^3-7938x+270884\)
19845.h2 19845.h \( 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.564812514$ $[0, 0, 1, -882, -10033]$ \(y^2+y=x^3-882x-10033\)
25920.n1 25920.n \( 2^{6} \cdot 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -648, 6318]$ \(y^2=x^3-648x+6318\)
25920.bd1 25920.bd \( 2^{6} \cdot 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $6.036734608$ $[0, 0, 0, -648, -6318]$ \(y^2=x^3-648x-6318\)
25920.cb2 25920.cb \( 2^{6} \cdot 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $1.056983278$ $[0, 0, 0, -72, -234]$ \(y^2=x^3-72x-234\)
25920.cv2 25920.cv \( 2^{6} \cdot 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -72, 234]$ \(y^2=x^3-72x+234\)
32400.cn1 32400.cn \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -64800, 6318000]$ \(y^2=x^3-64800x+6318000\)
32400.cw2 32400.cw \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -7200, -234000]$ \(y^2=x^3-7200x-234000\)
49005.g2 49005.g \( 3^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2178, -38932]$ \(y^2+y=x^3-2178x-38932\)
49005.i1 49005.i \( 3^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $6.046494544$ $[0, 0, 1, -19602, 1051157]$ \(y^2+y=x^3-19602x+1051157\)
68445.q1 68445.q \( 3^{4} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.459870740$ $[0, 0, 1, -27378, -1735081]$ \(y^2+y=x^3-27378x-1735081\)
68445.u2 68445.u \( 3^{4} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.238470154$ $[0, 0, 1, -3042, 64262]$ \(y^2+y=x^3-3042x+64262\)
99225.t2 99225.t \( 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.955508837$ $[0, 0, 1, -22050, -1254094]$ \(y^2+y=x^3-22050x-1254094\)
99225.x1 99225.x \( 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -198450, 33860531]$ \(y^2+y=x^3-198450x+33860531\)
117045.l1 117045.l \( 3^{4} \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.854362636$ $[0, 0, 1, -46818, -3880042]$ \(y^2+y=x^3-46818x-3880042\)
117045.o2 117045.o \( 3^{4} \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -5202, 143705]$ \(y^2+y=x^3-5202x+143705\)
129600.bz1 129600.bz \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $4.350307151$ $[0, 0, 0, -16200, -789750]$ \(y^2=x^3-16200x-789750\)
129600.cu2 129600.cu \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.440067917$ $[0, 0, 0, -1800, 29250]$ \(y^2=x^3-1800x+29250\)
129600.gm2 129600.gm \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1800, -29250]$ \(y^2=x^3-1800x-29250\)
129600.hh1 129600.hh \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -16200, 789750]$ \(y^2=x^3-16200x+789750\)
146205.g2 146205.g \( 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -6498, -200626]$ \(y^2+y=x^3-6498x-200626\)
146205.h1 146205.h \( 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $14.45185530$ $[0, 0, 1, -58482, 5416895]$ \(y^2+y=x^3-58482x+5416895\)
214245.j1 214245.j \( 3^{4} \cdot 5 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $7.804842085$ $[0, 0, 1, -85698, 9608888]$ \(y^2+y=x^3-85698x+9608888\)
214245.q2 214245.q \( 3^{4} \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.007788736$ $[0, 0, 1, -9522, -355885]$ \(y^2+y=x^3-9522x-355885\)
245025.l2 245025.l \( 3^{4} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -54450, -4866469]$ \(y^2+y=x^3-54450x-4866469\)
245025.o1 245025.o \( 3^{4} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -490050, 131394656]$ \(y^2+y=x^3-490050x+131394656\)
317520.bc1 317520.bc \( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $12.31007068$ $[0, 0, 0, -127008, -17336592]$ \(y^2=x^3-127008x-17336592\)
317520.hu2 317520.hu \( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -14112, 642096]$ \(y^2=x^3-14112x+642096\)
340605.c2 340605.c \( 3^{4} \cdot 5 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $7.513813910$ $[0, 0, 1, -15138, 713378]$ \(y^2+y=x^3-15138x+713378\)
340605.d1 340605.d \( 3^{4} \cdot 5 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -136242, -19261213]$ \(y^2+y=x^3-136242x-19261213\)
342225.bp1 342225.bp \( 3^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.484638127$ $[0, 0, 1, -684450, -216885094]$ \(y^2+y=x^3-684450x-216885094\)
342225.bt2 342225.bt \( 3^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.993610675$ $[0, 0, 1, -76050, 8032781]$ \(y^2+y=x^3-76050x+8032781\)
389205.k2 389205.k \( 3^{4} \cdot 5 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -17298, -871387]$ \(y^2+y=x^3-17298x-871387\)
389205.o1 389205.o \( 3^{4} \cdot 5 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $12.40959093$ $[0, 0, 1, -155682, 23527442]$ \(y^2+y=x^3-155682x+23527442\)
1270080.cs2 1270080.cs \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.601764653$ $[0, 0, 0, -3528, 80262]$ \(y^2=x^3-3528x+80262\)
1270080.ia2 1270080.ia \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $5.496684311$ $[0, 0, 0, -3528, -80262]$ \(y^2=x^3-3528x-80262\)
1270080.nv1 1270080.nv \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.466452433$ $[0, 0, 0, -31752, 2167074]$ \(y^2=x^3-31752x+2167074\)
1270080.tf1 1270080.tf \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $29.55217114$ $[0, 0, 0, -31752, -2167074]$ \(y^2=x^3-31752x-2167074\)
1587600.et1 1587600.et \( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $23.54260374$ $[0, 0, 0, -3175200, -2167074000]$ \(y^2=x^3-3175200x-2167074000\)
1587600.qz2 1587600.qz \( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.523315023$ $[0, 0, 0, -352800, 80262000]$ \(y^2=x^3-352800x+80262000\)
6350400.rr2 6350400.rr \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.322701069$ $[0, 0, 0, -88200, 10032750]$ \(y^2=x^3-88200x+10032750\)
6350400.so1 6350400.so \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -793800, 270884250]$ \(y^2=x^3-793800x+270884250\)
6350400.bxt2 6350400.bxt \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -88200, -10032750]$ \(y^2=x^3-88200x-10032750\)
6350400.byq1 6350400.byq \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $13.98814698$ $[0, 0, 0, -793800, -270884250]$ \(y^2=x^3-793800x-270884250\)
  Download to