Learn more

Refine search


Results (42 matches)

  Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
546.g4 546.g \( 2 \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 43, 255]$ \(y^2+xy=x^3+43x+255\)
1638.d4 1638.d \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.657050101$ $[1, -1, 0, 387, -6885]$ \(y^2+xy=x^3-x^2+387x-6885\)
3822.t4 3822.t \( 2 \cdot 3 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 2106, -85359]$ \(y^2+xy+y=x^3+x^2+2106x-85359\)
4368.k4 4368.k \( 2^{4} \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 688, -16320]$ \(y^2=x^3-x^2+688x-16320\)
7098.j4 7098.j \( 2 \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 7263, 552970]$ \(y^2+xy+y=x^3+7263x+552970\)
11466.z4 11466.z \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 18954, 2323642]$ \(y^2+xy=x^3-x^2+18954x+2323642\)
13104.j4 13104.j \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.996967870$ $[0, 0, 0, 6189, 434450]$ \(y^2=x^3+6189x+434450\)
13650.b4 13650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $2$ $\Z/2\Z$ $0.808519667$ $[1, 1, 0, 1075, 31875]$ \(y^2+xy=x^3+x^2+1075x+31875\)
17472.m4 17472.m \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.018185105$ $[0, -1, 0, 2751, 127809]$ \(y^2=x^3-x^2+2751x+127809\)
17472.bv4 17472.bv \( 2^{6} \cdot 3 \cdot 7 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, 2751, -127809]$ \(y^2=x^3+x^2+2751x-127809\)
21294.ck4 21294.ck \( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $12.41183024$ $[1, -1, 1, 65371, -14930197]$ \(y^2+xy+y=x^3-x^2+65371x-14930197\)
30576.cg4 30576.cg \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/4\Z$ $1.307436449$ $[0, 1, 0, 33696, 5530356]$ \(y^2=x^3+x^2+33696x+5530356\)
40950.eb4 40950.eb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 9670, -850953]$ \(y^2+xy+y=x^3-x^2+9670x-850953\)
49686.u4 49686.u \( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 355911, -189312885]$ \(y^2+xy=x^3+x^2+355911x-189312885\)
52416.fc4 52416.fc \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 24756, 3475600]$ \(y^2=x^3+24756x+3475600\)
52416.fg4 52416.fg \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 24756, -3475600]$ \(y^2=x^3+24756x-3475600\)
56784.h4 56784.h \( 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.014182030$ $[0, -1, 0, 116216, -35390096]$ \(y^2=x^3-x^2+116216x-35390096\)
66066.bg4 66066.bg \( 2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 5200, -334204]$ \(y^2+xy+y=x^3+5200x-334204\)
91728.ep4 91728.ep \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.052300199$ $[0, 0, 0, 303261, -149016350]$ \(y^2=x^3+303261x-149016350\)
95550.dp4 95550.dp \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.028513827$ $[1, 0, 1, 52649, -10775152]$ \(y^2+xy+y=x^3+52649x-10775152\)
109200.ha4 109200.ha \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $1.297998748$ $[0, 1, 0, 17192, -2005612]$ \(y^2=x^3+x^2+17192x-2005612\)
122304.da4 122304.da \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.723785965$ $[0, -1, 0, 134783, 44108065]$ \(y^2=x^3-x^2+134783x+44108065\)
122304.hy4 122304.hy \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.722507485$ $[0, 1, 0, 134783, -44108065]$ \(y^2=x^3+x^2+134783x-44108065\)
149058.fc4 149058.fc \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 3203194, 5114651091]$ \(y^2+xy+y=x^3-x^2+3203194x+5114651091\)
157794.bq4 157794.bq \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 12421, 1240391]$ \(y^2+xy+y=x^3+x^2+12421x+1240391\)
170352.fn4 170352.fn \( 2^{4} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1045941, 954486650]$ \(y^2=x^3+1045941x+954486650\)
177450.ht4 177450.ht \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $7.794191721$ $[1, 1, 1, 181587, 69121281]$ \(y^2+xy+y=x^3+x^2+181587x+69121281\)
197106.k4 197106.k \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 15516, -1718010]$ \(y^2+xy=x^3+x^2+15516x-1718010\)
198198.db4 198198.db \( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.796442534$ $[1, -1, 1, 46804, 9023501]$ \(y^2+xy+y=x^3-x^2+46804x+9023501\)
227136.df4 227136.df \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $12.16615825$ $[0, -1, 0, 464863, 282655905]$ \(y^2=x^3-x^2+464863x+282655905\)
227136.iv4 227136.iv \( 2^{6} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 464863, -282655905]$ \(y^2=x^3+x^2+464863x-282655905\)
286650.pw4 286650.pw \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 473845, 290929097]$ \(y^2+xy+y=x^3-x^2+473845x+290929097\)
288834.bx4 288834.bx \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 22736, -3057106]$ \(y^2+xy=x^3+22736x-3057106\)
327600.ii4 327600.ii \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.783374651$ $[0, 0, 0, 154725, 54306250]$ \(y^2=x^3+154725x+54306250\)
366912.cy4 366912.cy \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.167736549$ $[0, 0, 0, 1213044, 1192130800]$ \(y^2=x^3+1213044x+1192130800\)
366912.et4 366912.et \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1213044, -1192130800]$ \(y^2=x^3+1213044x-1192130800\)
397488.ir4 397488.ir \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 5694568, 12127413780]$ \(y^2=x^3+x^2+5694568x+12127413780\)
436800.fz4 436800.fz \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $4.248142068$ $[0, -1, 0, 68767, -16113663]$ \(y^2=x^3-x^2+68767x-16113663\)
436800.oa4 436800.oa \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 68767, 16113663]$ \(y^2=x^3+x^2+68767x+16113663\)
459186.r4 459186.r \( 2 \cdot 3 \cdot 7 \cdot 13 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 36146, 6146890]$ \(y^2+xy=x^3+x^2+36146x+6146890\)
462462.r4 462462.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.021740956$ $[1, 1, 0, 254824, 114886710]$ \(y^2+xy=x^3+x^2+254824x+114886710\)
473382.bs4 473382.bs \( 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $21.44937004$ $[1, -1, 0, 111789, -33378773]$ \(y^2+xy=x^3-x^2+111789x-33378773\)
  Download to