Learn more

Refine search


Results (1-50 of 69 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
114.c1 114.c \( 2 \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -428, -3444]$ \(y^2+xy=x^3-428x-3444\)
342.c1 342.c \( 2 \cdot 3^{2} \cdot 19 \) $1$ $\Z/6\Z$ $1.064851355$ $[1, -1, 0, -3852, 92988]$ \(y^2+xy=x^3-x^2-3852x+92988\)
912.c1 912.c \( 2^{4} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6848, 220416]$ \(y^2=x^3-x^2-6848x+220416\)
2166.a1 2166.a \( 2 \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -154515, 23313369]$ \(y^2+xy=x^3+x^2-154515x+23313369\)
2736.o1 2736.o \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $5.835684370$ $[0, 0, 0, -61635, -5889598]$ \(y^2=x^3-61635x-5889598\)
2850.g1 2850.g \( 2 \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -10700, -430500]$ \(y^2+xy=x^3+x^2-10700x-430500\)
3648.i1 3648.i \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $7.399886169$ $[0, -1, 0, -27393, -1735935]$ \(y^2=x^3-x^2-27393x-1735935\)
3648.bc1 3648.bc \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -27393, 1735935]$ \(y^2=x^3+x^2-27393x+1735935\)
5586.u1 5586.u \( 2 \cdot 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.148553948$ $[1, 1, 1, -20973, 1160319]$ \(y^2+xy+y=x^3+x^2-20973x+1160319\)
6498.t1 6498.t \( 2 \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1390640, -630851601]$ \(y^2+xy+y=x^3-x^2-1390640x-630851601\)
8550.bj1 8550.bj \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -96305, 11527197]$ \(y^2+xy+y=x^3-x^2-96305x+11527197\)
10944.bd1 10944.bd \( 2^{6} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -246540, 47116784]$ \(y^2=x^3-246540x+47116784\)
10944.bq1 10944.bq \( 2^{6} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -246540, -47116784]$ \(y^2=x^3-246540x-47116784\)
13794.p1 13794.p \( 2 \cdot 3 \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $5.308735666$ $[1, 0, 1, -51791, 4532174]$ \(y^2+xy+y=x^3-51791x+4532174\)
16758.i1 16758.i \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.317860315$ $[1, -1, 0, -188757, -31517375]$ \(y^2+xy=x^3-x^2-188757x-31517375\)
17328.bb1 17328.bb \( 2^{4} \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2472248, -1497000108]$ \(y^2=x^3+x^2-2472248x-1497000108\)
19266.i1 19266.i \( 2 \cdot 3 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -72336, -7494134]$ \(y^2+xy+y=x^3-72336x-7494134\)
22800.cb1 22800.cb \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.916413852$ $[0, 1, 0, -171208, 27209588]$ \(y^2=x^3+x^2-171208x+27209588\)
32946.r1 32946.r \( 2 \cdot 3 \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z$ $10.98904277$ $[1, 1, 1, -123698, -16796677]$ \(y^2+xy+y=x^3+x^2-123698x-16796677\)
41382.cd1 41382.cd \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -466115, -122368705]$ \(y^2+xy+y=x^3-x^2-466115x-122368705\)
44688.dc1 44688.dc \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.237720534$ $[0, 1, 0, -335568, -74931564]$ \(y^2=x^3+x^2-335568x-74931564\)
51984.br1 51984.br \( 2^{4} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -22250235, 40396752682]$ \(y^2=x^3-22250235x+40396752682\)
54150.cv1 54150.cv \( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -3862888, 2921896892]$ \(y^2+xy=x^3-3862888x+2921896892\)
57798.bm1 57798.bm \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $5.707890063$ $[1, -1, 1, -651020, 202341611]$ \(y^2+xy+y=x^3-x^2-651020x+202341611\)
60306.x1 60306.x \( 2 \cdot 3 \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -226423, 41450309]$ \(y^2+xy=x^3-226423x+41450309\)
68400.l1 68400.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $5.350391242$ $[0, 0, 0, -1540875, -736199750]$ \(y^2=x^3-1540875x-736199750\)
69312.bh1 69312.bh \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $38.90742043$ $[0, -1, 0, -9888993, -11966111871]$ \(y^2=x^3-x^2-9888993x-11966111871\)
69312.ct1 69312.ct \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.909768200$ $[0, 1, 0, -9888993, 11966111871]$ \(y^2=x^3+x^2-9888993x+11966111871\)
91200.k1 91200.k \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.865273134$ $[0, -1, 0, -684833, 218361537]$ \(y^2=x^3-x^2-684833x+218361537\)
91200.ja1 91200.ja \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -684833, -218361537]$ \(y^2=x^3+x^2-684833x-218361537\)
95874.b1 95874.b \( 2 \cdot 3 \cdot 19 \cdot 29^{2} \) $1$ $\Z/2\Z$ $3.566007640$ $[1, 1, 0, -359965, -83275799]$ \(y^2+xy=x^3+x^2-359965x-83275799\)
98838.k1 98838.k \( 2 \cdot 3^{2} \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.094184915$ $[1, -1, 0, -1113282, 452396992]$ \(y^2+xy=x^3-x^2-1113282x+452396992\)
106134.z1 106134.z \( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) $2$ $\Z/2\Z$ $14.06558925$ $[1, 0, 1, -7571261, -8019199324]$ \(y^2+xy+y=x^3-7571261x-8019199324\)
109554.r1 109554.r \( 2 \cdot 3 \cdot 19 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -411328, 101366237]$ \(y^2+xy+y=x^3+x^2-411328x+101366237\)
110352.o1 110352.o \( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) $2$ $\Z/2\Z$ $9.724930357$ $[0, -1, 0, -828648, -290059152]$ \(y^2=x^3-x^2-828648x-290059152\)
134064.dg1 134064.dg \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.468531486$ $[0, 0, 0, -3020115, 2020132114]$ \(y^2=x^3-3020115x+2020132114\)
139650.do1 139650.do \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.262417057$ $[1, 0, 1, -524326, 146088548]$ \(y^2+xy+y=x^3-524326x+146088548\)
154128.w1 154128.w \( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.127351933$ $[0, -1, 0, -1157368, 479624560]$ \(y^2=x^3-x^2-1157368x+479624560\)
156066.m1 156066.m \( 2 \cdot 3 \cdot 19 \cdot 37^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -585961, -172691080]$ \(y^2+xy+y=x^3-585961x-172691080\)
162450.ch1 162450.ch \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $13.11316565$ $[1, -1, 0, -34765992, -78891216084]$ \(y^2+xy=x^3-x^2-34765992x-78891216084\)
178752.cm1 178752.cm \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $8.170669860$ $[0, -1, 0, -1342273, -598110239]$ \(y^2=x^3-x^2-1342273x-598110239\)
178752.hx1 178752.hx \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z$ $3.142798099$ $[0, 1, 0, -1342273, 598110239]$ \(y^2=x^3+x^2-1342273x+598110239\)
180918.n1 180918.n \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $12.54542785$ $[1, -1, 0, -2037807, -1119158343]$ \(y^2+xy=x^3-x^2-2037807x-1119158343\)
191634.n1 191634.n \( 2 \cdot 3 \cdot 19 \cdot 41^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -719503, -235205455]$ \(y^2+xy+y=x^3+x^2-719503x-235205455\)
207936.dh1 207936.dh \( 2^{6} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $4.739183848$ $[0, 0, 0, -89000940, -323174021456]$ \(y^2=x^3-89000940x-323174021456\)
207936.ex1 207936.ex \( 2^{6} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -89000940, 323174021456]$ \(y^2=x^3-89000940x+323174021456\)
210786.e1 210786.e \( 2 \cdot 3 \cdot 19 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -791410, 270656512]$ \(y^2+xy=x^3+x^2-791410x+270656512\)
251826.g1 251826.g \( 2 \cdot 3 \cdot 19 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -945498, 353784480]$ \(y^2+xy=x^3-945498x+353784480\)
262086.cw1 262086.cw \( 2 \cdot 3 \cdot 11^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -18696378, -31123575933]$ \(y^2+xy+y=x^3+x^2-18696378x-31123575933\)
263568.cb1 263568.cb \( 2^{4} \cdot 3 \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z$ $7.027026548$ $[0, 1, 0, -1979168, 1071028980]$ \(y^2=x^3+x^2-1979168x+1071028980\)
Next   Download to