Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
57.b2 |
57c1 |
57.b |
57c |
$2$ |
$5$ |
\( 3 \cdot 19 \) |
\( - 3^{10} \cdot 19 \) |
$0$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$4$ |
$12$ |
$-0.153312$ |
$841232384/1121931$ |
$1.00490$ |
$5.14865$ |
$[0, 1, 1, 20, -32]$ |
\(y^2+y=x^3+x^2+20x-32\) |
5.24.0-5.a.1.2, 38.2.0.a.1, 190.48.1.? |
$[]$ |
171.c2 |
171c1 |
171.c |
171c |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \) |
\( - 3^{16} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$0.395995$ |
$841232384/1121931$ |
$1.00490$ |
$5.33056$ |
$[0, 0, 1, 177, 1035]$ |
\(y^2+y=x^3+177x+1035\) |
5.12.0.a.1, 15.24.0-5.a.1.1, 38.2.0.a.1, 190.24.1.?, 570.48.1.? |
$[]$ |
912.d2 |
912f1 |
912.d |
912f |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 19 \) |
\( - 2^{12} \cdot 3^{10} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$380$ |
$48$ |
$1$ |
$1.131424581$ |
$1$ |
|
$2$ |
$480$ |
$0.539836$ |
$841232384/1121931$ |
$1.00490$ |
$4.27459$ |
$[0, -1, 0, 315, 2349]$ |
\(y^2=x^3-x^2+315x+2349\) |
5.12.0.a.1, 20.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 380.48.1.? |
$[(36, 243)]$ |
1083.d2 |
1083c1 |
1083.d |
1083c |
$2$ |
$5$ |
\( 3 \cdot 19^{2} \) |
\( - 3^{10} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$4320$ |
$1.318909$ |
$841232384/1121931$ |
$1.00490$ |
$5.50740$ |
$[0, -1, 1, 7100, 260625]$ |
\(y^2+y=x^3-x^2+7100x+260625\) |
5.12.0.a.1, 10.24.0-5.a.1.1, 38.2.0.a.1, 95.24.0.?, 190.48.1.? |
$[]$ |
1425.i2 |
1425b1 |
1425.i |
1425b |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 19 \) |
\( - 3^{10} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$190$ |
$48$ |
$1$ |
$3.134539737$ |
$1$ |
|
$0$ |
$1680$ |
$0.651407$ |
$841232384/1121931$ |
$1.00490$ |
$4.19625$ |
$[0, -1, 1, 492, -4957]$ |
\(y^2+y=x^3-x^2+492x-4957\) |
5.24.0-5.a.1.1, 38.2.0.a.1, 190.48.1.? |
$[(309/2, 5585/2)]$ |
2736.h2 |
2736s1 |
2736.h |
2736s |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{16} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$1.089142$ |
$841232384/1121931$ |
$1.00490$ |
$4.51410$ |
$[0, 0, 0, 2832, -66256]$ |
\(y^2=x^3+2832x-66256\) |
5.12.0.a.1, 38.2.0.a.1, 60.24.0-5.a.1.2, 190.24.1.?, 1140.48.1.? |
$[]$ |
2793.a2 |
2793f1 |
2793.a |
2793f |
$2$ |
$5$ |
\( 3 \cdot 7^{2} \cdot 19 \) |
\( - 3^{10} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1330$ |
$48$ |
$1$ |
$0.953015065$ |
$1$ |
|
$4$ |
$3960$ |
$0.819643$ |
$841232384/1121931$ |
$1.00490$ |
$4.09480$ |
$[0, -1, 1, 964, 12830]$ |
\(y^2+y=x^3-x^2+964x+12830\) |
5.12.0.a.1, 35.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 1330.48.1.? |
$[(2, 121)]$ |
3249.a2 |
3249f1 |
3249.a |
3249f |
$2$ |
$5$ |
\( 3^{2} \cdot 19^{2} \) |
\( - 3^{16} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$570$ |
$48$ |
$1$ |
$1.271985605$ |
$1$ |
|
$2$ |
$34560$ |
$1.868214$ |
$841232384/1121931$ |
$1.00490$ |
$5.57433$ |
$[0, 0, 1, 63897, -7100780]$ |
\(y^2+y=x^3+63897x-7100780\) |
5.12.0.a.1, 30.24.0-5.a.1.1, 38.2.0.a.1, 190.24.1.?, 285.24.0.?, $\ldots$ |
$[(247, 4873)]$ |
3648.h2 |
3648f1 |
3648.h |
3648f |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19 \) |
\( - 2^{6} \cdot 3^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.193262$ |
$841232384/1121931$ |
$1.00490$ |
$3.04503$ |
$[0, -1, 0, 79, -333]$ |
\(y^2=x^3-x^2+79x-333\) |
5.12.0.a.1, 38.2.0.a.1, 40.24.0-5.a.1.3, 190.24.1.?, 760.48.1.? |
$[]$ |
3648.y2 |
3648be1 |
3648.y |
3648be |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19 \) |
\( - 2^{6} \cdot 3^{10} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$760$ |
$48$ |
$1$ |
$0.282379912$ |
$1$ |
|
$4$ |
$960$ |
$0.193262$ |
$841232384/1121931$ |
$1.00490$ |
$3.04503$ |
$[0, 1, 0, 79, 333]$ |
\(y^2=x^3+x^2+79x+333\) |
5.12.0.a.1, 38.2.0.a.1, 40.24.0-5.a.1.1, 190.24.1.?, 760.48.1.? |
$[(4, 27)]$ |
4275.a2 |
4275i1 |
4275.a |
4275i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{16} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$1.200714$ |
$841232384/1121931$ |
$1.00490$ |
$4.43327$ |
$[0, 0, 1, 4425, 129406]$ |
\(y^2+y=x^3+4425x+129406\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 570.48.1.? |
$[]$ |
6897.g2 |
6897g1 |
6897.g |
6897g |
$2$ |
$5$ |
\( 3 \cdot 11^{2} \cdot 19 \) |
\( - 3^{10} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2090$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$16200$ |
$1.045635$ |
$841232384/1121931$ |
$1.00490$ |
$3.98283$ |
$[0, 1, 1, 2380, 51827]$ |
\(y^2+y=x^3+x^2+2380x+51827\) |
5.12.0.a.1, 38.2.0.a.1, 55.24.0-5.a.1.1, 190.24.1.?, 2090.48.1.? |
$[]$ |
8379.q2 |
8379o1 |
8379.q |
8379o |
$2$ |
$5$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{16} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3990$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$31680$ |
$1.368950$ |
$841232384/1121931$ |
$1.00490$ |
$4.32650$ |
$[0, 0, 1, 8673, -355091]$ |
\(y^2+y=x^3+8673x-355091\) |
5.12.0.a.1, 38.2.0.a.1, 105.24.0.?, 190.24.1.?, 3990.48.1.? |
$[]$ |
9633.p2 |
9633p1 |
9633.p |
9633p |
$2$ |
$5$ |
\( 3 \cdot 13^{2} \cdot 19 \) |
\( - 3^{10} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2470$ |
$48$ |
$1$ |
$1.116102729$ |
$1$ |
|
$0$ |
$23040$ |
$1.129164$ |
$841232384/1121931$ |
$1.00490$ |
$3.94704$ |
$[0, 1, 1, 3324, -83131]$ |
\(y^2+y=x^3+x^2+3324x-83131\) |
5.12.0.a.1, 38.2.0.a.1, 65.24.0-5.a.1.1, 190.24.1.?, 2470.48.1.? |
$[(237/2, 4559/2)]$ |
10944.bt2 |
10944bt1 |
10944.bt |
10944bt |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{16} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$3.960626542$ |
$1$ |
|
$2$ |
$7680$ |
$0.742568$ |
$841232384/1121931$ |
$1.00490$ |
$3.39408$ |
$[0, 0, 0, 708, -8282]$ |
\(y^2=x^3+708x-8282\) |
5.12.0.a.1, 38.2.0.a.1, 120.24.0.?, 190.24.1.?, 2280.48.1.? |
$[(143, 1737)]$ |
10944.bu2 |
10944z1 |
10944.bu |
10944z |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{16} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2280$ |
$48$ |
$1$ |
$3.585426184$ |
$1$ |
|
$2$ |
$7680$ |
$0.742568$ |
$841232384/1121931$ |
$1.00490$ |
$3.39408$ |
$[0, 0, 0, 708, 8282]$ |
\(y^2=x^3+708x+8282\) |
5.12.0.a.1, 38.2.0.a.1, 120.24.0.?, 190.24.1.?, 2280.48.1.? |
$[(91, 909)]$ |
16473.a2 |
16473c1 |
16473.a |
16473c |
$2$ |
$5$ |
\( 3 \cdot 17^{2} \cdot 19 \) |
\( - 3^{10} \cdot 17^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3230$ |
$48$ |
$1$ |
$1.772974643$ |
$1$ |
|
$4$ |
$60480$ |
$1.263294$ |
$841232384/1121931$ |
$1.00490$ |
$3.89470$ |
$[0, -1, 1, 5684, -190272]$ |
\(y^2+y=x^3-x^2+5684x-190272\) |
5.12.0.a.1, 38.2.0.a.1, 85.24.0.?, 190.24.1.?, 3230.48.1.? |
$[(31, 121)]$ |
17328.bc2 |
17328bf1 |
17328.bc |
17328bf |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{10} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$380$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$172800$ |
$2.012054$ |
$841232384/1121931$ |
$1.00490$ |
$4.79511$ |
$[0, 1, 0, 113595, -16793613]$ |
\(y^2=x^3+x^2+113595x-16793613\) |
5.12.0.a.1, 20.24.0-5.a.1.4, 38.2.0.a.1, 190.24.1.?, 380.48.1.? |
$[]$ |
20691.a2 |
20691r1 |
20691.a |
20691r |
$2$ |
$5$ |
\( 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 3^{16} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$6270$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$129600$ |
$1.594942$ |
$841232384/1121931$ |
$1.00490$ |
$4.20584$ |
$[0, 0, 1, 21417, -1377918]$ |
\(y^2+y=x^3+21417x-1377918\) |
5.12.0.a.1, 38.2.0.a.1, 165.24.0.?, 190.24.1.?, 6270.48.1.? |
$[]$ |
22800.do2 |
22800di1 |
22800.do |
22800di |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$380$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$67200$ |
$1.344555$ |
$841232384/1121931$ |
$1.00490$ |
$3.86572$ |
$[0, 1, 0, 7867, 309363]$ |
\(y^2=x^3+x^2+7867x+309363\) |
5.12.0.a.1, 20.24.0-5.a.1.1, 38.2.0.a.1, 190.24.1.?, 380.48.1.? |
$[]$ |
27075.d2 |
27075u1 |
27075.d |
27075u |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{10} \cdot 5^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$190$ |
$48$ |
$1$ |
$0.279639809$ |
$1$ |
|
$8$ |
$604800$ |
$2.123627$ |
$841232384/1121931$ |
$1.00490$ |
$4.71662$ |
$[0, 1, 1, 177492, 32933144]$ |
\(y^2+y=x^3+x^2+177492x+32933144\) |
5.12.0.a.1, 10.24.0-5.a.1.2, 38.2.0.a.1, 95.24.0.?, 190.48.1.? |
$[(-51, 4873)]$ |
28899.e2 |
28899r1 |
28899.e |
28899r |
$2$ |
$5$ |
\( 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 3^{16} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7410$ |
$48$ |
$1$ |
$1.682649990$ |
$1$ |
|
$4$ |
$184320$ |
$1.678469$ |
$841232384/1121931$ |
$1.00490$ |
$4.16661$ |
$[0, 0, 1, 29913, 2274444]$ |
\(y^2+y=x^3+29913x+2274444\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 195.24.0.?, 7410.48.1.? |
$[(-52, 760)]$ |
30153.b2 |
30153i1 |
30153.b |
30153i |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 23^{2} \) |
\( - 3^{10} \cdot 19 \cdot 23^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$4370$ |
$48$ |
$1$ |
$0.302474505$ |
$1$ |
|
$18$ |
$147840$ |
$1.414436$ |
$841232384/1121931$ |
$1.00490$ |
$3.84226$ |
$[0, 1, 1, 10404, 469982]$ |
\(y^2+y=x^3+x^2+10404x+469982\) |
5.12.0.a.1, 38.2.0.a.1, 115.24.0.?, 190.24.1.?, 4370.48.1.? |
$[(153, 2380), (360, 7141)]$ |
44688.cv2 |
44688cs1 |
44688.cv |
44688cs |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{10} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2660$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$158400$ |
$1.512791$ |
$841232384/1121931$ |
$1.00490$ |
$3.81131$ |
$[0, 1, 0, 15419, -836557]$ |
\(y^2=x^3+x^2+15419x-836557\) |
5.12.0.a.1, 38.2.0.a.1, 140.24.0.?, 190.24.1.?, 2660.48.1.? |
$[]$ |
47937.e2 |
47937c1 |
47937.e |
47937c |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 29^{2} \) |
\( - 3^{10} \cdot 19 \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$5510$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$268800$ |
$1.530336$ |
$841232384/1121931$ |
$1.00490$ |
$3.80603$ |
$[0, -1, 1, 16540, -940651]$ |
\(y^2+y=x^3-x^2+16540x-940651\) |
5.12.0.a.1, 38.2.0.a.1, 145.24.0.?, 190.24.1.?, 5510.48.1.? |
$[]$ |
49419.l2 |
49419c1 |
49419.l |
49419c |
$2$ |
$5$ |
\( 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 3^{16} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$9690$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.812601$ |
$841232384/1121931$ |
$1.00490$ |
$4.10870$ |
$[0, 0, 1, 51153, 5086183]$ |
\(y^2+y=x^3+51153x+5086183\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 255.24.0.?, 9690.48.1.? |
$[]$ |
51984.z2 |
51984cq1 |
51984.z |
51984cq |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{16} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$2.561359$ |
$841232384/1121931$ |
$1.00490$ |
$4.91701$ |
$[0, 0, 0, 1022352, 454449904]$ |
\(y^2=x^3+1022352x+454449904\) |
5.12.0.a.1, 38.2.0.a.1, 60.24.0-5.a.1.4, 190.24.1.?, 1140.48.1.? |
$[]$ |
53067.v2 |
53067u1 |
53067.v |
53067u |
$2$ |
$5$ |
\( 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{10} \cdot 7^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1330$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1425600$ |
$2.291862$ |
$841232384/1121931$ |
$1.00490$ |
$4.61044$ |
$[0, 1, 1, 347884, -90090241]$ |
\(y^2+y=x^3+x^2+347884x-90090241\) |
5.12.0.a.1, 38.2.0.a.1, 70.24.0-5.a.1.2, 190.24.1.?, 665.24.0.?, $\ldots$ |
$[]$ |
54777.a2 |
54777b1 |
54777.a |
54777b |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 31^{2} \) |
\( - 3^{10} \cdot 19 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$5890$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$367200$ |
$1.563683$ |
$841232384/1121931$ |
$1.00490$ |
$3.79618$ |
$[0, -1, 1, 18900, 1135964]$ |
\(y^2+y=x^3-x^2+18900x+1135964\) |
5.12.0.a.1, 38.2.0.a.1, 155.24.0.?, 190.24.1.?, 5890.48.1.? |
$[]$ |
68400.fj2 |
68400fo1 |
68400.fj |
68400fo |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{16} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1140$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$537600$ |
$1.893860$ |
$841232384/1121931$ |
$1.00490$ |
$4.07633$ |
$[0, 0, 0, 70800, -8282000]$ |
\(y^2=x^3+70800x-8282000\) |
5.12.0.a.1, 38.2.0.a.1, 60.24.0-5.a.1.1, 190.24.1.?, 1140.48.1.? |
$[]$ |
69312.t2 |
69312co1 |
69312.t |
69312co |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{10} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$760$ |
$48$ |
$1$ |
$1.201802143$ |
$1$ |
|
$2$ |
$345600$ |
$1.665482$ |
$841232384/1121931$ |
$1.00490$ |
$3.82562$ |
$[0, -1, 0, 28399, -2113401]$ |
\(y^2=x^3-x^2+28399x-2113401\) |
5.12.0.a.1, 38.2.0.a.1, 40.24.0-5.a.1.5, 190.24.1.?, 760.48.1.? |
$[(1970, 87723)]$ |
69312.cs2 |
69312bq1 |
69312.cs |
69312bq |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{10} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$760$ |
$48$ |
$1$ |
$1.404986745$ |
$1$ |
|
$2$ |
$345600$ |
$1.665482$ |
$841232384/1121931$ |
$1.00490$ |
$3.82562$ |
$[0, 1, 0, 28399, 2113401]$ |
\(y^2=x^3+x^2+28399x+2113401\) |
5.12.0.a.1, 38.2.0.a.1, 40.24.0-5.a.1.7, 190.24.1.?, 760.48.1.? |
$[(-32, 1083)]$ |
69825.ci2 |
69825ca1 |
69825.ci |
69825ca |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{10} \cdot 5^{6} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1330$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$554400$ |
$1.624363$ |
$841232384/1121931$ |
$1.00490$ |
$3.77885$ |
$[0, 1, 1, 24092, 1651969]$ |
\(y^2+y=x^3+x^2+24092x+1651969\) |
5.12.0.a.1, 35.24.0-5.a.1.1, 38.2.0.a.1, 190.24.1.?, 1330.48.1.? |
$[]$ |
78033.c2 |
78033c1 |
78033.c |
78033c |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 37^{2} \) |
\( - 3^{10} \cdot 19 \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7030$ |
$48$ |
$1$ |
$3.516497994$ |
$1$ |
|
$0$ |
$596160$ |
$1.652147$ |
$841232384/1121931$ |
$1.00490$ |
$3.77117$ |
$[0, 1, 1, 26924, -1933193]$ |
\(y^2+y=x^3+x^2+26924x-1933193\) |
5.12.0.a.1, 38.2.0.a.1, 185.24.0.?, 190.24.1.?, 7030.48.1.? |
$[(1265/4, 53359/4)]$ |
81225.bq2 |
81225bi1 |
81225.bq |
81225bi |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{16} \cdot 5^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$570$ |
$48$ |
$1$ |
$15.72277690$ |
$1$ |
|
$0$ |
$4838400$ |
$2.672932$ |
$841232384/1121931$ |
$1.00490$ |
$4.84134$ |
$[0, 0, 1, 1597425, -887597469]$ |
\(y^2+y=x^3+1597425x-887597469\) |
5.12.0.a.1, 30.24.0-5.a.1.2, 38.2.0.a.1, 190.24.1.?, 285.24.0.?, $\ldots$ |
$[(798027569/74, 22544629818341/74)]$ |
90459.u2 |
90459s1 |
90459.u |
90459s |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \cdot 23^{2} \) |
\( - 3^{16} \cdot 19 \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$13110$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1182720$ |
$1.963741$ |
$841232384/1121931$ |
$1.00490$ |
$4.04997$ |
$[0, 0, 1, 93633, -12595887]$ |
\(y^2+y=x^3+93633x-12595887\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 345.24.0.?, 13110.48.1.? |
$[]$ |
91200.ea2 |
91200fi1 |
91200.ea |
91200fi |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{10} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$134400$ |
$0.997981$ |
$841232384/1121931$ |
$1.00490$ |
$3.03234$ |
$[0, -1, 0, 1967, 37687]$ |
\(y^2=x^3-x^2+1967x+37687\) |
5.12.0.a.1, 38.2.0.a.1, 40.24.0-5.a.1.2, 190.24.1.?, 760.48.1.? |
$[]$ |
91200.fl2 |
91200dx1 |
91200.fl |
91200dx |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{10} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$760$ |
$48$ |
$1$ |
$1.430729780$ |
$1$ |
|
$2$ |
$134400$ |
$0.997981$ |
$841232384/1121931$ |
$1.00490$ |
$3.03234$ |
$[0, 1, 0, 1967, -37687]$ |
\(y^2=x^3+x^2+1967x-37687\) |
5.12.0.a.1, 38.2.0.a.1, 40.24.0-5.a.1.4, 190.24.1.?, 760.48.1.? |
$[(32, 243)]$ |
95817.a2 |
95817e1 |
95817.a |
95817e |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 41^{2} \) |
\( - 3^{10} \cdot 19 \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7790$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$816000$ |
$1.703474$ |
$841232384/1121931$ |
$1.00490$ |
$3.75736$ |
$[0, -1, 1, 33060, -2653630]$ |
\(y^2+y=x^3-x^2+33060x-2653630\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 205.24.0.?, 7790.48.1.? |
$[]$ |
105393.s2 |
105393k1 |
105393.s |
105393k |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 43^{2} \) |
\( - 3^{10} \cdot 19 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$8170$ |
$48$ |
$1$ |
$11.15076618$ |
$1$ |
|
$0$ |
$975240$ |
$1.727289$ |
$841232384/1121931$ |
$1.00490$ |
$3.75113$ |
$[0, -1, 1, 36364, 3036383]$ |
\(y^2+y=x^3-x^2+36364x+3036383\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 215.24.0.?, 8170.48.1.? |
$[(504101/58, 670932607/58)]$ |
110352.y2 |
110352x1 |
110352.y |
110352x |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{10} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$4180$ |
$48$ |
$1$ |
$17.92489322$ |
$1$ |
|
$0$ |
$648000$ |
$1.738783$ |
$841232384/1121931$ |
$1.00490$ |
$3.74815$ |
$[0, -1, 0, 38075, -3278867]$ |
\(y^2=x^3-x^2+38075x-3278867\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 220.24.0.?, 4180.48.1.? |
$[(940348876/307, 28839921965163/307)]$ |
125913.e2 |
125913h1 |
125913.e |
125913h |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 47^{2} \) |
\( - 3^{10} \cdot 19 \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$8930$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1266840$ |
$1.771763$ |
$841232384/1121931$ |
$1.00490$ |
$3.73975$ |
$[0, 1, 1, 43444, 3995324]$ |
\(y^2+y=x^3+x^2+43444x+3995324\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 235.24.0.?, 8930.48.1.? |
$[]$ |
131043.a2 |
131043d1 |
131043.a |
131043d |
$2$ |
$5$ |
\( 3 \cdot 11^{2} \cdot 19^{2} \) |
\( - 3^{10} \cdot 11^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2090$ |
$48$ |
$1$ |
$2.768024196$ |
$1$ |
|
$0$ |
$5832000$ |
$2.517857$ |
$841232384/1121931$ |
$1.00490$ |
$4.48689$ |
$[0, -1, 1, 859060, -350328496]$ |
\(y^2+y=x^3-x^2+859060x-350328496\) |
5.12.0.a.1, 38.2.0.a.1, 110.24.0.?, 190.24.1.?, 1045.24.0.?, $\ldots$ |
$[(1781/2, 87719/2)]$ |
134064.ea2 |
134064bw1 |
134064.ea |
134064bw |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{16} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$7980$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1267200$ |
$2.062096$ |
$841232384/1121931$ |
$1.00490$ |
$4.01498$ |
$[0, 0, 0, 138768, 22725808]$ |
\(y^2=x^3+138768x+22725808\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 420.24.0.?, 7980.48.1.? |
$[]$ |
143811.a2 |
143811a1 |
143811.a |
143811a |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \cdot 29^{2} \) |
\( - 3^{16} \cdot 19 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$16530$ |
$48$ |
$1$ |
$3.009431517$ |
$1$ |
|
$2$ |
$2150400$ |
$2.079643$ |
$841232384/1121931$ |
$1.00490$ |
$4.00898$ |
$[0, 0, 1, 148857, 25248712]$ |
\(y^2+y=x^3+148857x+25248712\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 435.24.0.?, 16530.48.1.? |
$[(203, 7989)]$ |
154128.t2 |
154128bo1 |
154128.t |
154128bo |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{10} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$4940$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$921600$ |
$1.822309$ |
$841232384/1121931$ |
$1.00490$ |
$3.72723$ |
$[0, -1, 0, 53179, 5373549]$ |
\(y^2=x^3-x^2+53179x+5373549\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 260.24.0.?, 4940.48.1.? |
$[]$ |
159201.e2 |
159201e1 |
159201.e |
159201e |
$2$ |
$5$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{16} \cdot 7^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$3990$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$11404800$ |
$2.841167$ |
$841232384/1121931$ |
$1.00490$ |
$4.73789$ |
$[0, 0, 1, 3130953, 2435567454]$ |
\(y^2+y=x^3+3130953x+2435567454\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 210.24.0.?, 1995.24.0.?, $\ldots$ |
$[]$ |
160113.f2 |
160113g1 |
160113.f |
160113g |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 53^{2} \) |
\( - 3^{10} \cdot 19 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$10070$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1797120$ |
$1.831835$ |
$841232384/1121931$ |
$1.00490$ |
$3.72491$ |
$[0, -1, 1, 55244, -5726745]$ |
\(y^2+y=x^3-x^2+55244x-5726745\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 265.24.0.?, 10070.48.1.? |
$[]$ |
164331.c2 |
164331c1 |
164331.c |
164331c |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \cdot 31^{2} \) |
\( - 3^{16} \cdot 19 \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$17670$ |
$48$ |
$1$ |
$26.22954651$ |
$1$ |
|
$0$ |
$2937600$ |
$2.112988$ |
$841232384/1121931$ |
$1.00490$ |
$3.99778$ |
$[0, 0, 1, 170097, -30841133]$ |
\(y^2+y=x^3+170097x-30841133\) |
5.12.0.a.1, 38.2.0.a.1, 190.24.1.?, 465.24.0.?, 17670.48.1.? |
$[(16399552003825/156892, 75103210144501426903/156892)]$ |
172425.h2 |
172425o1 |
172425.h |
172425o |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 3^{10} \cdot 5^{6} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2090$ |
$48$ |
$1$ |
$6.155689197$ |
$1$ |
|
$0$ |
$2268000$ |
$1.850355$ |
$841232384/1121931$ |
$1.00490$ |
$3.72046$ |
$[0, -1, 1, 59492, 6359418]$ |
\(y^2+y=x^3-x^2+59492x+6359418\) |
5.12.0.a.1, 38.2.0.a.1, 55.24.0-5.a.1.2, 190.24.1.?, 2090.48.1.? |
$[(-2129/5, 102119/5)]$ |