Learn more

Refine search


Results (1-50 of 138 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
21.a5 21.a \( 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 0, 0, -4, -1]$ \(y^2+xy=x^3-4x-1\)
63.a5 63.a \( 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -36, 27]$ \(y^2+xy=x^3-x^2-36x+27\)
147.a5 147.a \( 3 \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -197, 146]$ \(y^2+xy+y=x^3+x^2-197x+146\)
336.a5 336.a \( 2^{4} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.746299208$ $[0, -1, 0, -64, 64]$ \(y^2=x^3-x^2-64x+64\)
441.f5 441.f \( 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.638508823$ $[1, -1, 0, -1773, -5720]$ \(y^2+xy=x^3-x^2-1773x-5720\)
525.d5 525.d \( 3 \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -100, -125]$ \(y^2+xy=x^3+x^2-100x-125\)
1008.l5 1008.l \( 2^{4} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -579, -1150]$ \(y^2=x^3-579x-1150\)
1344.g5 1344.g \( 2^{6} \cdot 3 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.950960562$ $[0, -1, 0, -257, -255]$ \(y^2=x^3-x^2-257x-255\)
1344.s5 1344.s \( 2^{6} \cdot 3 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -257, 255]$ \(y^2=x^3+x^2-257x+255\)
1575.c5 1575.c \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.945149794$ $[1, -1, 1, -905, 2472]$ \(y^2+xy+y=x^3-x^2-905x+2472\)
2352.v5 2352.v \( 2^{4} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -3152, -15660]$ \(y^2=x^3+x^2-3152x-15660\)
2541.j5 2541.j \( 3 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -487, 845]$ \(y^2+xy+y=x^3-487x+845\)
3549.c5 3549.c \( 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.671455529$ $[1, 0, 1, -680, -1519]$ \(y^2+xy+y=x^3-680x-1519\)
3675.n5 3675.n \( 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.931482321$ $[1, 0, 1, -4926, 28123]$ \(y^2+xy+y=x^3-4926x+28123\)
4032.h5 4032.h \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2316, 9200]$ \(y^2=x^3-2316x+9200\)
4032.k5 4032.k \( 2^{6} \cdot 3^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2316, -9200]$ \(y^2=x^3-2316x-9200\)
6069.b5 6069.b \( 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -1162, -3754]$ \(y^2+xy+y=x^3+x^2-1162x-3754\)
7056.p5 7056.p \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -28371, 394450]$ \(y^2=x^3-28371x+394450\)
7581.d5 7581.d \( 3 \cdot 7 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -1451, 3960]$ \(y^2+xy=x^3+x^2-1451x+3960\)
7623.g5 7623.g \( 3^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -4379, -22822]$ \(y^2+xy+y=x^3-x^2-4379x-22822\)
8400.bn5 8400.bn \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.722395119$ $[0, 1, 0, -1608, 4788]$ \(y^2=x^3+x^2-1608x+4788\)
9408.m5 9408.m \( 2^{6} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.435798593$ $[0, -1, 0, -12609, -112671]$ \(y^2=x^3-x^2-12609x-112671\)
9408.bv5 9408.bv \( 2^{6} \cdot 3 \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.188253267$ $[0, 1, 0, -12609, 112671]$ \(y^2=x^3+x^2-12609x+112671\)
10647.d5 10647.d \( 3^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.194483374$ $[1, -1, 1, -6116, 41006]$ \(y^2+xy+y=x^3-x^2-6116x+41006\)
11025.g5 11025.g \( 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.800848983$ $[1, -1, 1, -44330, -759328]$ \(y^2+xy+y=x^3-x^2-44330x-759328\)
11109.d5 11109.d \( 3 \cdot 7 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -2127, 7920]$ \(y^2+xy=x^3-2127x+7920\)
17661.f5 17661.f \( 3 \cdot 7 \cdot 29^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.513857150$ $[1, 1, 0, -3381, -17640]$ \(y^2+xy=x^3+x^2-3381x-17640\)
17787.s5 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.555445177$ $[1, 1, 0, -23839, -313760]$ \(y^2+xy=x^3+x^2-23839x-313760\)
18207.e5 18207.e \( 3^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.979093106$ $[1, -1, 0, -10458, 90895]$ \(y^2+xy=x^3-x^2-10458x+90895\)
20181.e5 20181.e \( 3 \cdot 7 \cdot 31^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -3864, 18216]$ \(y^2+xy+y=x^3+x^2-3864x+18216\)
22743.f5 22743.f \( 3^{2} \cdot 7 \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.694208115$ $[1, -1, 1, -13064, -119982]$ \(y^2+xy+y=x^3-x^2-13064x-119982\)
24843.p5 24843.p \( 3 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -33296, 487635]$ \(y^2+xy=x^3+x^2-33296x+487635\)
25200.cr5 25200.cr \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.428017124$ $[0, 0, 0, -14475, -143750]$ \(y^2=x^3-14475x-143750\)
28224.es5 28224.es \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -113484, 3155600]$ \(y^2=x^3-113484x+3155600\)
28224.fk5 28224.fk \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.948500660$ $[0, 0, 0, -113484, -3155600]$ \(y^2=x^3-113484x-3155600\)
28749.h5 28749.h \( 3 \cdot 7 \cdot 37^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -5505, -34169]$ \(y^2+xy+y=x^3-5505x-34169\)
33327.k5 33327.k \( 3^{2} \cdot 7 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -19143, -213840]$ \(y^2+xy=x^3-x^2-19143x-213840\)
33600.ce5 33600.ce \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -6433, 44737]$ \(y^2=x^3-x^2-6433x+44737\)
33600.fm5 33600.fm \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.500968584$ $[0, 1, 0, -6433, -44737]$ \(y^2=x^3+x^2-6433x-44737\)
35301.c5 35301.c \( 3 \cdot 7 \cdot 41^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -6759, -48684]$ \(y^2+xy+y=x^3+x^2-6759x-48684\)
38829.h5 38829.h \( 3 \cdot 7 \cdot 43^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.34344491$ $[1, 1, 0, -7434, 49815]$ \(y^2+xy=x^3+x^2-7434x+49815\)
40656.l5 40656.l \( 2^{4} \cdot 3 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.948444921$ $[0, -1, 0, -7784, -54096]$ \(y^2=x^3-x^2-7784x-54096\)
42483.d5 42483.d \( 3 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.158886372$ $[1, 0, 0, -56939, 1116744]$ \(y^2+xy=x^3-56939x+1116744\)
46389.d5 46389.d \( 3 \cdot 7 \cdot 47^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.915004228$ $[1, 0, 0, -8882, 68355]$ \(y^2+xy=x^3-8882x+68355\)
52983.e5 52983.e \( 3^{2} \cdot 7 \cdot 29^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -30434, 445848]$ \(y^2+xy+y=x^3-x^2-30434x+445848\)
53067.r5 53067.r \( 3 \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -71125, -1571629]$ \(y^2+xy+y=x^3-71125x-1571629\)
53361.p5 53361.p \( 3^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -214556, 8256966]$ \(y^2+xy+y=x^3-x^2-214556x+8256966\)
56784.bh5 56784.bh \( 2^{4} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -10872, 97200]$ \(y^2=x^3-x^2-10872x+97200\)
58800.m5 58800.m \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.595662697$ $[0, -1, 0, -78808, -1799888]$ \(y^2=x^3-x^2-78808x-1799888\)
58989.n5 58989.n \( 3 \cdot 7 \cdot 53^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $12.39907719$ $[1, 1, 0, -11294, -103785]$ \(y^2+xy=x^3+x^2-11294x-103785\)
Next   Download to