Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
585.e2 |
585b1 |
585.e |
585b |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{3} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$48$ |
$-0.264715$ |
$7077888/10985$ |
$[0, 0, 1, 12, -21]$ |
\(y^2+y=x^3+12x-21\) |
585.f2 |
585d2 |
585.f |
585d |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{9} \cdot 5 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.255646730$ |
$1$ |
|
$4$ |
$144$ |
$0.284592$ |
$7077888/10985$ |
$[0, 0, 1, 108, 560]$ |
\(y^2+y=x^3+108x+560\) |
2925.i2 |
2925b2 |
2925.i |
2925b |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 3^{9} \cdot 5^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.650507421$ |
$1$ |
|
$4$ |
$3456$ |
$1.089310$ |
$7077888/10985$ |
$[0, 0, 1, 2700, 70031]$ |
\(y^2+y=x^3+2700x+70031\) |
2925.k2 |
2925a1 |
2925.k |
2925a |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 3^{3} \cdot 5^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.999575009$ |
$1$ |
|
$4$ |
$1152$ |
$0.540005$ |
$7077888/10985$ |
$[0, 0, 1, 300, -2594]$ |
\(y^2+y=x^3+300x-2594\) |
7605.j2 |
7605a2 |
7605.j |
7605a |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.503225701$ |
$1$ |
|
$2$ |
$24192$ |
$1.567066$ |
$7077888/10985$ |
$[0, 0, 1, 18252, 1230869]$ |
\(y^2+y=x^3+18252x+1230869\) |
7605.m2 |
7605e1 |
7605.m |
7605e |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5 \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$8064$ |
$1.017759$ |
$7077888/10985$ |
$[0, 0, 1, 2028, -45588]$ |
\(y^2+y=x^3+2028x-45588\) |
9360.r2 |
9360ba1 |
9360.r |
9360ba |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( - 2^{12} \cdot 3^{3} \cdot 5 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.667641043$ |
$1$ |
|
$4$ |
$3456$ |
$0.428432$ |
$7077888/10985$ |
$[0, 0, 0, 192, 1328]$ |
\(y^2=x^3+192x+1328\) |
9360.bu2 |
9360bg2 |
9360.bu |
9360bg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$0.977738$ |
$7077888/10985$ |
$[0, 0, 0, 1728, -35856]$ |
\(y^2=x^3+1728x-35856\) |
28665.v2 |
28665c2 |
28665.v |
28665c |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 3^{9} \cdot 5 \cdot 7^{6} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$54432$ |
$1.257547$ |
$7077888/10985$ |
$[0, 0, 1, 5292, -192166]$ |
\(y^2+y=x^3+5292x-192166\) |
28665.bd2 |
28665l1 |
28665.bd |
28665l |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 3^{3} \cdot 5 \cdot 7^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3.281536579$ |
$1$ |
|
$2$ |
$18144$ |
$0.708241$ |
$7077888/10985$ |
$[0, 0, 1, 588, 7117]$ |
\(y^2+y=x^3+588x+7117\) |
37440.ba2 |
37440c2 |
37440.ba |
37440c |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.961445720$ |
$1$ |
|
$2$ |
$20736$ |
$0.631166$ |
$7077888/10985$ |
$[0, 0, 0, 432, 4482]$ |
\(y^2=x^3+432x+4482\) |
37440.bx2 |
37440cy2 |
37440.bx |
37440cy |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$20736$ |
$0.631166$ |
$7077888/10985$ |
$[0, 0, 0, 432, -4482]$ |
\(y^2=x^3+432x-4482\) |
37440.dz2 |
37440q1 |
37440.dz |
37440q |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$0.081859$ |
$7077888/10985$ |
$[0, 0, 0, 48, -166]$ |
\(y^2=x^3+48x-166\) |
37440.ew2 |
37440di1 |
37440.ew |
37440di |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.246615099$ |
$1$ |
|
$2$ |
$6912$ |
$0.081859$ |
$7077888/10985$ |
$[0, 0, 0, 48, 166]$ |
\(y^2=x^3+48x+166\) |
38025.bl2 |
38025d1 |
38025.bl |
38025d |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{7} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.554165091$ |
$1$ |
|
$4$ |
$193536$ |
$1.822479$ |
$7077888/10985$ |
$[0, 0, 1, 50700, -5698469]$ |
\(y^2+y=x^3+50700x-5698469\) |
38025.bo2 |
38025c2 |
38025.bo |
38025c |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{7} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.081155744$ |
$1$ |
|
$0$ |
$580608$ |
$2.371784$ |
$7077888/10985$ |
$[0, 0, 1, 456300, 153858656]$ |
\(y^2+y=x^3+456300x+153858656\) |
46800.bx2 |
46800by1 |
46800.bx |
46800by |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{3} \cdot 5^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.233152$ |
$7077888/10985$ |
$[0, 0, 0, 4800, 166000]$ |
\(y^2=x^3+4800x+166000\) |
46800.cf2 |
46800bx2 |
46800.cf |
46800bx |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$248832$ |
$1.782457$ |
$7077888/10985$ |
$[0, 0, 0, 43200, -4482000]$ |
\(y^2=x^3+43200x-4482000\) |
70785.o2 |
70785a1 |
70785.o |
70785a |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
\( - 3^{3} \cdot 5 \cdot 11^{6} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$64800$ |
$0.934233$ |
$7077888/10985$ |
$[0, 0, 1, 1452, 27618]$ |
\(y^2+y=x^3+1452x+27618\) |
70785.q2 |
70785e2 |
70785.q |
70785e |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) |
\( - 3^{9} \cdot 5 \cdot 11^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10.41809559$ |
$1$ |
|
$0$ |
$194400$ |
$1.483540$ |
$7077888/10985$ |
$[0, 0, 1, 13068, -745693]$ |
\(y^2+y=x^3+13068x-745693\) |
121680.u2 |
121680ch2 |
121680.u |
121680ch |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{9} \cdot 5 \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1741824$ |
$2.260212$ |
$7077888/10985$ |
$[0, 0, 0, 292032, -78775632]$ |
\(y^2=x^3+292032x-78775632\) |
121680.eb2 |
121680cu1 |
121680.eb |
121680cu |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{12} \cdot 3^{3} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6.533072437$ |
$1$ |
|
$0$ |
$580608$ |
$1.710907$ |
$7077888/10985$ |
$[0, 0, 0, 32448, 2917616]$ |
\(y^2=x^3+32448x+2917616\) |
143325.cp2 |
143325ds2 |
143325.cp |
143325ds |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{9} \cdot 5^{7} \cdot 7^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.709879969$ |
$1$ |
|
$0$ |
$1306368$ |
$2.062267$ |
$7077888/10985$ |
$[0, 0, 1, 132300, -24020719]$ |
\(y^2+y=x^3+132300x-24020719\) |
143325.dn2 |
143325dt1 |
143325.dn |
143325dt |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{3} \cdot 5^{7} \cdot 7^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.751623935$ |
$1$ |
|
$4$ |
$435456$ |
$1.512959$ |
$7077888/10985$ |
$[0, 0, 1, 14700, 889656]$ |
\(y^2+y=x^3+14700x+889656\) |
169065.o2 |
169065t2 |
169065.o |
169065t |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 3^{9} \cdot 5 \cdot 13^{3} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$725760$ |
$1.701199$ |
$7077888/10985$ |
$[0, 0, 1, 31212, 2752508]$ |
\(y^2+y=x^3+31212x+2752508\) |
169065.t2 |
169065r1 |
169065.t |
169065r |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 3^{3} \cdot 5 \cdot 13^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.032228516$ |
$1$ |
|
$4$ |
$241920$ |
$1.151892$ |
$7077888/10985$ |
$[0, 0, 1, 3468, -101945]$ |
\(y^2+y=x^3+3468x-101945\) |
187200.fz2 |
187200hk2 |
187200.fz |
187200hk |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.541246518$ |
$1$ |
|
$2$ |
$497664$ |
$1.435884$ |
$7077888/10985$ |
$[0, 0, 0, 10800, -560250]$ |
\(y^2=x^3+10800x-560250\) |
187200.gq2 |
187200hn1 |
187200.gq |
187200hn |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.457388086$ |
$1$ |
|
$2$ |
$165888$ |
$0.886578$ |
$7077888/10985$ |
$[0, 0, 0, 1200, 20750]$ |
\(y^2=x^3+1200x+20750\) |
187200.jz2 |
187200qa1 |
187200.jz |
187200qa |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{7} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.140157991$ |
$1$ |
|
$6$ |
$165888$ |
$0.886578$ |
$7077888/10985$ |
$[0, 0, 0, 1200, -20750]$ |
\(y^2=x^3+1200x-20750\) |
187200.ks2 |
187200qd2 |
187200.ks |
187200qd |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{6} \cdot 3^{9} \cdot 5^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$1.435884$ |
$7077888/10985$ |
$[0, 0, 0, 10800, 560250]$ |
\(y^2=x^3+10800x+560250\) |
211185.p2 |
211185t1 |
211185.p |
211185t |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 19^{2} \) |
\( - 3^{3} \cdot 5 \cdot 13^{3} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$331776$ |
$1.207504$ |
$7077888/10985$ |
$[0, 0, 1, 4332, 142324]$ |
\(y^2+y=x^3+4332x+142324\) |
211185.s2 |
211185q2 |
211185.s |
211185q |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 19^{2} \) |
\( - 3^{9} \cdot 5 \cdot 13^{3} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4.877921426$ |
$1$ |
|
$0$ |
$995328$ |
$1.756811$ |
$7077888/10985$ |
$[0, 0, 1, 38988, -3842755]$ |
\(y^2+y=x^3+38988x-3842755\) |
309465.o2 |
309465o2 |
309465.o |
309465o |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 23^{2} \) |
\( - 3^{9} \cdot 5 \cdot 13^{3} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5.587055918$ |
$1$ |
|
$2$ |
$1568160$ |
$1.852339$ |
$7077888/10985$ |
$[0, 0, 1, 57132, -6816562]$ |
\(y^2+y=x^3+57132x-6816562\) |
309465.q2 |
309465q1 |
309465.q |
309465q |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 23^{2} \) |
\( - 3^{3} \cdot 5 \cdot 13^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$522720$ |
$1.303032$ |
$7077888/10985$ |
$[0, 0, 1, 6348, 252465]$ |
\(y^2+y=x^3+6348x+252465\) |
353925.bw2 |
353925bw2 |
353925.bw |
353925bw |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 3^{9} \cdot 5^{7} \cdot 11^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.324327249$ |
$1$ |
|
$2$ |
$4665600$ |
$2.288258$ |
$7077888/10985$ |
$[0, 0, 1, 326700, -93211594]$ |
\(y^2+y=x^3+326700x-93211594\) |
353925.bx2 |
353925bx1 |
353925.bx |
353925bx |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 3^{3} \cdot 5^{7} \cdot 11^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.626487391$ |
$1$ |
|
$2$ |
$1555200$ |
$1.738953$ |
$7077888/10985$ |
$[0, 0, 1, 36300, 3452281]$ |
\(y^2+y=x^3+36300x+3452281\) |
372645.ci2 |
372645ci1 |
372645.ci |
372645ci |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{3} \cdot 5 \cdot 7^{6} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3048192$ |
$1.990715$ |
$7077888/10985$ |
$[0, 0, 1, 99372, 15636598]$ |
\(y^2+y=x^3+99372x+15636598\) |
372645.dh2 |
372645dh2 |
372645.dh |
372645dh |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{9} \cdot 5 \cdot 7^{6} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8.245701466$ |
$1$ |
|
$0$ |
$9144576$ |
$2.540020$ |
$7077888/10985$ |
$[0, 0, 1, 894348, -422188153]$ |
\(y^2+y=x^3+894348x-422188153\) |
458640.fh2 |
458640fh2 |
458640.fh |
458640fh |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5 \cdot 7^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17.69776918$ |
$1$ |
|
$0$ |
$3919104$ |
$1.950693$ |
$7077888/10985$ |
$[0, 0, 0, 84672, 12298608]$ |
\(y^2=x^3+84672x+12298608\) |
458640.iu2 |
458640iu1 |
458640.iu |
458640iu |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{3} \cdot 5 \cdot 7^{6} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1306368$ |
$1.401388$ |
$7077888/10985$ |
$[0, 0, 0, 9408, -455504]$ |
\(y^2=x^3+9408x-455504\) |
486720.cw2 |
486720cw1 |
486720.cw |
486720cw |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \cdot 13^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4.527567154$ |
$1$ |
|
$4$ |
$1161216$ |
$1.364334$ |
$7077888/10985$ |
$[0, 0, 0, 8112, 364702]$ |
\(y^2=x^3+8112x+364702\) |
486720.fp2 |
486720fp1 |
486720.fp |
486720fp |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3.516758818$ |
$1$ |
|
$2$ |
$1161216$ |
$1.364334$ |
$7077888/10985$ |
$[0, 0, 0, 8112, -364702]$ |
\(y^2=x^3+8112x-364702\) |
486720.lq2 |
486720lq2 |
486720.lq |
486720lq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{6} \cdot 3^{9} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7.415631283$ |
$1$ |
|
$0$ |
$3483648$ |
$1.913639$ |
$7077888/10985$ |
$[0, 0, 0, 73008, -9846954]$ |
\(y^2=x^3+73008x-9846954\) |
486720.nq2 |
486720nq2 |
486720.nq |
486720nq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{6} \cdot 3^{9} \cdot 5 \cdot 13^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9.372516628$ |
$1$ |
|
$2$ |
$3483648$ |
$1.913639$ |
$7077888/10985$ |
$[0, 0, 0, 73008, 9846954]$ |
\(y^2=x^3+73008x+9846954\) |
491985.t2 |
491985t1 |
491985.t |
491985t |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \) |
\( - 3^{3} \cdot 5 \cdot 13^{3} \cdot 29^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3.401293863$ |
$1$ |
|
$4$ |
$1161216$ |
$1.418934$ |
$7077888/10985$ |
$[0, 0, 1, 10092, -506072]$ |
\(y^2+y=x^3+10092x-506072\) |
491985.bc2 |
491985bc2 |
491985.bc |
491985bc |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \) |
\( - 3^{9} \cdot 5 \cdot 13^{3} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.766554744$ |
$1$ |
|
$2$ |
$3483648$ |
$1.968239$ |
$7077888/10985$ |
$[0, 0, 1, 90828, 13663937]$ |
\(y^2+y=x^3+90828x+13663937\) |