Learn more

Refine search


Results (46 matches)

  Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
585.e2 585.e \( 3^{2} \cdot 5 \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[0, 0, 1, 12, -21]$ \(y^2+y=x^3+12x-21\)
585.f2 585.f \( 3^{2} \cdot 5 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.255646730$ $[0, 0, 1, 108, 560]$ \(y^2+y=x^3+108x+560\)
2925.i2 2925.i \( 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.650507421$ $[0, 0, 1, 2700, 70031]$ \(y^2+y=x^3+2700x+70031\)
2925.k2 2925.k \( 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.999575009$ $[0, 0, 1, 300, -2594]$ \(y^2+y=x^3+300x-2594\)
7605.j2 7605.j \( 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.503225701$ $[0, 0, 1, 18252, 1230869]$ \(y^2+y=x^3+18252x+1230869\)
7605.m2 7605.m \( 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 2028, -45588]$ \(y^2+y=x^3+2028x-45588\)
9360.r2 9360.r \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.667641043$ $[0, 0, 0, 192, 1328]$ \(y^2=x^3+192x+1328\)
9360.bu2 9360.bu \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1728, -35856]$ \(y^2=x^3+1728x-35856\)
28665.v2 28665.v \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 5292, -192166]$ \(y^2+y=x^3+5292x-192166\)
28665.bd2 28665.bd \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.281536579$ $[0, 0, 1, 588, 7117]$ \(y^2+y=x^3+588x+7117\)
37440.ba2 37440.ba \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.961445720$ $[0, 0, 0, 432, 4482]$ \(y^2=x^3+432x+4482\)
37440.bx2 37440.bx \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 432, -4482]$ \(y^2=x^3+432x-4482\)
37440.dz2 37440.dz \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 48, -166]$ \(y^2=x^3+48x-166\)
37440.ew2 37440.ew \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.246615099$ $[0, 0, 0, 48, 166]$ \(y^2=x^3+48x+166\)
38025.bl2 38025.bl \( 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.554165091$ $[0, 0, 1, 50700, -5698469]$ \(y^2+y=x^3+50700x-5698469\)
38025.bo2 38025.bo \( 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.081155744$ $[0, 0, 1, 456300, 153858656]$ \(y^2+y=x^3+456300x+153858656\)
46800.bx2 46800.bx \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 4800, 166000]$ \(y^2=x^3+4800x+166000\)
46800.cf2 46800.cf \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 43200, -4482000]$ \(y^2=x^3+43200x-4482000\)
70785.o2 70785.o \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 1452, 27618]$ \(y^2+y=x^3+1452x+27618\)
70785.q2 70785.q \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $10.41809559$ $[0, 0, 1, 13068, -745693]$ \(y^2+y=x^3+13068x-745693\)
121680.u2 121680.u \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 292032, -78775632]$ \(y^2=x^3+292032x-78775632\)
121680.eb2 121680.eb \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.533072437$ $[0, 0, 0, 32448, 2917616]$ \(y^2=x^3+32448x+2917616\)
143325.cp2 143325.cp \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.709879969$ $[0, 0, 1, 132300, -24020719]$ \(y^2+y=x^3+132300x-24020719\)
143325.dn2 143325.dn \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.751623935$ $[0, 0, 1, 14700, 889656]$ \(y^2+y=x^3+14700x+889656\)
169065.o2 169065.o \( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 31212, 2752508]$ \(y^2+y=x^3+31212x+2752508\)
169065.t2 169065.t \( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $2.032228516$ $[0, 0, 1, 3468, -101945]$ \(y^2+y=x^3+3468x-101945\)
187200.fz2 187200.fz \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.541246518$ $[0, 0, 0, 10800, -560250]$ \(y^2=x^3+10800x-560250\)
187200.gq2 187200.gq \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.457388086$ $[0, 0, 0, 1200, 20750]$ \(y^2=x^3+1200x+20750\)
187200.jz2 187200.jz \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $1.140157991$ $[0, 0, 0, 1200, -20750]$ \(y^2=x^3+1200x-20750\)
187200.ks2 187200.ks \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 10800, 560250]$ \(y^2=x^3+10800x+560250\)
211185.p2 211185.p \( 3^{2} \cdot 5 \cdot 13 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 4332, 142324]$ \(y^2+y=x^3+4332x+142324\)
211185.s2 211185.s \( 3^{2} \cdot 5 \cdot 13 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.877921426$ $[0, 0, 1, 38988, -3842755]$ \(y^2+y=x^3+38988x-3842755\)
309465.o2 309465.o \( 3^{2} \cdot 5 \cdot 13 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $5.587055918$ $[0, 0, 1, 57132, -6816562]$ \(y^2+y=x^3+57132x-6816562\)
309465.q2 309465.q \( 3^{2} \cdot 5 \cdot 13 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 6348, 252465]$ \(y^2+y=x^3+6348x+252465\)
353925.bw2 353925.bw \( 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.324327249$ $[0, 0, 1, 326700, -93211594]$ \(y^2+y=x^3+326700x-93211594\)
353925.bx2 353925.bx \( 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.626487391$ $[0, 0, 1, 36300, 3452281]$ \(y^2+y=x^3+36300x+3452281\)
372645.ci2 372645.ci \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 99372, 15636598]$ \(y^2+y=x^3+99372x+15636598\)
372645.dh2 372645.dh \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.245701466$ $[0, 0, 1, 894348, -422188153]$ \(y^2+y=x^3+894348x-422188153\)
458640.fh2 458640.fh \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $17.69776918$ $[0, 0, 0, 84672, 12298608]$ \(y^2=x^3+84672x+12298608\)
458640.iu2 458640.iu \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 9408, -455504]$ \(y^2=x^3+9408x-455504\)
486720.cw2 486720.cw \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $4.527567154$ $[0, 0, 0, 8112, 364702]$ \(y^2=x^3+8112x+364702\)
486720.fp2 486720.fp \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.516758818$ $[0, 0, 0, 8112, -364702]$ \(y^2=x^3+8112x-364702\)
486720.lq2 486720.lq \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.415631283$ $[0, 0, 0, 73008, -9846954]$ \(y^2=x^3+73008x-9846954\)
486720.nq2 486720.nq \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $9.372516628$ $[0, 0, 0, 73008, 9846954]$ \(y^2=x^3+73008x+9846954\)
491985.t2 491985.t \( 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \) $2$ $\mathsf{trivial}$ $3.401293863$ $[0, 0, 1, 10092, -506072]$ \(y^2+y=x^3+10092x-506072\)
491985.bc2 491985.bc \( 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $2.766554744$ $[0, 0, 1, 90828, 13663937]$ \(y^2+y=x^3+90828x+13663937\)
  Download to