Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
456.a1 |
456d1 |
456.a |
456d |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.096295024$ |
$1$ |
|
$10$ |
$96$ |
$0.068805$ |
$70575104/61731$ |
$0.95058$ |
$3.85748$ |
$[0, -1, 0, 55, 93]$ |
\(y^2=x^3-x^2+55x+93\) |
38.2.0.a.1 |
$[(23, 114)]$ |
912.i1 |
912c1 |
912.i |
912c |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$0.068805$ |
$70575104/61731$ |
$0.95058$ |
$3.46517$ |
$[0, 1, 0, 55, -93]$ |
\(y^2=x^3+x^2+55x-93\) |
38.2.0.a.1 |
$[]$ |
1368.d1 |
1368c1 |
1368.d |
1368c |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.149027139$ |
$1$ |
|
$10$ |
$768$ |
$0.618111$ |
$70575104/61731$ |
$0.95058$ |
$4.18344$ |
$[0, 0, 0, 492, -3004]$ |
\(y^2=x^3+492x-3004\) |
38.2.0.a.1 |
$[(46, 342)]$ |
2736.i1 |
2736f1 |
2736.i |
2736f |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1536$ |
$0.618111$ |
$70575104/61731$ |
$0.95058$ |
$3.81704$ |
$[0, 0, 0, 492, 3004]$ |
\(y^2=x^3+492x+3004\) |
38.2.0.a.1 |
$[]$ |
3648.g1 |
3648ba1 |
3648.g |
3648ba |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.583558816$ |
$1$ |
|
$4$ |
$1536$ |
$0.415378$ |
$70575104/61731$ |
$0.95058$ |
$3.38655$ |
$[0, -1, 0, 219, -963]$ |
\(y^2=x^3-x^2+219x-963\) |
38.2.0.a.1 |
$[(12, 57)]$ |
3648.z1 |
3648k1 |
3648.z |
3648k |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1536$ |
$0.415378$ |
$70575104/61731$ |
$0.95058$ |
$3.38655$ |
$[0, 1, 0, 219, 963]$ |
\(y^2=x^3+x^2+219x+963\) |
38.2.0.a.1 |
$[]$ |
8664.l1 |
8664f1 |
8664.l |
8664f |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.095502006$ |
$1$ |
|
$4$ |
$34560$ |
$1.541025$ |
$70575104/61731$ |
$0.95058$ |
$4.55325$ |
$[0, 1, 0, 19735, -756549]$ |
\(y^2=x^3+x^2+19735x-756549\) |
38.2.0.a.1 |
$[(139, 2166)]$ |
10944.bs1 |
10944p1 |
10944.bs |
10944p |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12288$ |
$0.964684$ |
$70575104/61731$ |
$0.95058$ |
$3.69526$ |
$[0, 0, 0, 1968, -24032]$ |
\(y^2=x^3+1968x-24032\) |
38.2.0.a.1 |
$[]$ |
10944.bv1 |
10944ck1 |
10944.bv |
10944ck |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12288$ |
$0.964684$ |
$70575104/61731$ |
$0.95058$ |
$3.69526$ |
$[0, 0, 0, 1968, 24032]$ |
\(y^2=x^3+1968x+24032\) |
38.2.0.a.1 |
$[]$ |
11400.bo1 |
11400l1 |
11400.bo |
11400l |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.383528602$ |
$1$ |
|
$6$ |
$13440$ |
$0.873524$ |
$70575104/61731$ |
$0.95058$ |
$3.56200$ |
$[0, 1, 0, 1367, 14363]$ |
\(y^2=x^3+x^2+1367x+14363\) |
38.2.0.a.1 |
$[(-1, 114)]$ |
17328.l1 |
17328e1 |
17328.l |
17328e |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.541025$ |
$70575104/61731$ |
$0.95058$ |
$4.22988$ |
$[0, -1, 0, 19735, 756549]$ |
\(y^2=x^3-x^2+19735x+756549\) |
38.2.0.a.1 |
$[]$ |
22344.u1 |
22344bd1 |
22344.u |
22344bd |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31680$ |
$1.041759$ |
$70575104/61731$ |
$0.95058$ |
$3.52424$ |
$[0, 1, 0, 2679, -37269]$ |
\(y^2=x^3+x^2+2679x-37269\) |
38.2.0.a.1 |
$[]$ |
22800.d1 |
22800d1 |
22800.d |
22800d |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.028833567$ |
$1$ |
|
$2$ |
$26880$ |
$0.873524$ |
$70575104/61731$ |
$0.95058$ |
$3.31595$ |
$[0, -1, 0, 1367, -14363]$ |
\(y^2=x^3-x^2+1367x-14363\) |
38.2.0.a.1 |
$[(76, 723)]$ |
25992.l1 |
25992bb1 |
25992.l |
25992bb |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$2.090332$ |
$70575104/61731$ |
$0.95058$ |
$4.70960$ |
$[0, 0, 0, 177612, 20604436]$ |
\(y^2=x^3+177612x+20604436\) |
38.2.0.a.1 |
$[]$ |
34200.cx1 |
34200cq1 |
34200.cx |
34200cq |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$107520$ |
$1.422831$ |
$70575104/61731$ |
$0.95058$ |
$3.81856$ |
$[0, 0, 0, 12300, -375500]$ |
\(y^2=x^3+12300x-375500\) |
38.2.0.a.1 |
$[]$ |
44688.n1 |
44688k1 |
44688.n |
44688k |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.529566747$ |
$1$ |
|
$2$ |
$63360$ |
$1.041759$ |
$70575104/61731$ |
$0.95058$ |
$3.29610$ |
$[0, -1, 0, 2679, 37269]$ |
\(y^2=x^3-x^2+2679x+37269\) |
38.2.0.a.1 |
$[(-12, 57)]$ |
51984.ba1 |
51984u1 |
51984.ba |
51984u |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.564516995$ |
$1$ |
|
$2$ |
$552960$ |
$2.090332$ |
$70575104/61731$ |
$0.95058$ |
$4.40897$ |
$[0, 0, 0, 177612, -20604436]$ |
\(y^2=x^3+177612x-20604436\) |
38.2.0.a.1 |
$[(49609, 11049849)]$ |
55176.e1 |
55176a1 |
55176.e |
55176a |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 11^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$114240$ |
$1.267752$ |
$70575104/61731$ |
$0.95058$ |
$3.48083$ |
$[0, -1, 0, 6615, -150291]$ |
\(y^2=x^3-x^2+6615x-150291\) |
38.2.0.a.1 |
$[]$ |
67032.ca1 |
67032s1 |
67032.ca |
67032s |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$3.179653947$ |
$1$ |
|
$2$ |
$253440$ |
$1.591066$ |
$70575104/61731$ |
$0.95058$ |
$3.76899$ |
$[0, 0, 0, 24108, 1030372]$ |
\(y^2=x^3+24108x+1030372\) |
38.2.0.a.1 |
$[(-34, 414)]$ |
68400.r1 |
68400bp1 |
68400.r |
68400bp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$215040$ |
$1.422831$ |
$70575104/61731$ |
$0.95058$ |
$3.58081$ |
$[0, 0, 0, 12300, 375500]$ |
\(y^2=x^3+12300x+375500\) |
38.2.0.a.1 |
$[]$ |
69312.u1 |
69312o1 |
69312.u |
69312o |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{2} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.887598$ |
$70575104/61731$ |
$0.95058$ |
$4.07692$ |
$[0, -1, 0, 78939, -6131331]$ |
\(y^2=x^3-x^2+78939x-6131331\) |
38.2.0.a.1 |
$[]$ |
69312.cr1 |
69312dk1 |
69312.cr |
69312dk |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{2} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.887598$ |
$70575104/61731$ |
$0.95058$ |
$4.07692$ |
$[0, 1, 0, 78939, 6131331]$ |
\(y^2=x^3+x^2+78939x+6131331\) |
38.2.0.a.1 |
$[]$ |
77064.d1 |
77064b1 |
77064.d |
77064b |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.992829042$ |
$1$ |
|
$4$ |
$221184$ |
$1.351280$ |
$70575104/61731$ |
$0.95058$ |
$3.46656$ |
$[0, -1, 0, 9239, 241357]$ |
\(y^2=x^3-x^2+9239x+241357\) |
38.2.0.a.1 |
$[(61, 1014)]$ |
91200.ec1 |
91200j1 |
91200.ec |
91200j |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$7.427254497$ |
$1$ |
|
$0$ |
$215040$ |
$1.220097$ |
$70575104/61731$ |
$0.95058$ |
$3.27760$ |
$[0, -1, 0, 5467, 109437]$ |
\(y^2=x^3-x^2+5467x+109437\) |
38.2.0.a.1 |
$[(1364/5, 94137/5)]$ |
91200.fj1 |
91200ii1 |
91200.fj |
91200ii |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$215040$ |
$1.220097$ |
$70575104/61731$ |
$0.95058$ |
$3.27760$ |
$[0, 1, 0, 5467, -109437]$ |
\(y^2=x^3+x^2+5467x-109437\) |
38.2.0.a.1 |
$[]$ |
110352.cd1 |
110352p1 |
110352.cd |
110352p |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$228480$ |
$1.267752$ |
$70575104/61731$ |
$0.95058$ |
$3.27305$ |
$[0, 1, 0, 6615, 150291]$ |
\(y^2=x^3+x^2+6615x+150291\) |
38.2.0.a.1 |
$[]$ |
131784.o1 |
131784d1 |
131784.o |
131784d |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 17^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 17^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$496128$ |
$1.485411$ |
$70575104/61731$ |
$0.95058$ |
$3.44532$ |
$[0, 1, 0, 15799, 551883]$ |
\(y^2=x^3+x^2+15799x+551883\) |
38.2.0.a.1 |
$[]$ |
134064.dv1 |
134064en1 |
134064.dv |
134064en |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$506880$ |
$1.591066$ |
$70575104/61731$ |
$0.95058$ |
$3.54771$ |
$[0, 0, 0, 24108, -1030372]$ |
\(y^2=x^3+24108x-1030372\) |
38.2.0.a.1 |
$[]$ |
154128.cj1 |
154128cm1 |
154128.cj |
154128cm |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.130561854$ |
$1$ |
|
$2$ |
$442368$ |
$1.351280$ |
$70575104/61731$ |
$0.95058$ |
$3.26541$ |
$[0, 1, 0, 9239, -241357]$ |
\(y^2=x^3+x^2+9239x-241357\) |
38.2.0.a.1 |
$[(446, 9633)]$ |
165528.l1 |
165528b1 |
165528.l |
165528b |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$913920$ |
$1.817059$ |
$70575104/61731$ |
$0.95058$ |
$3.71114$ |
$[0, 0, 0, 59532, 3998324]$ |
\(y^2=x^3+59532x+3998324\) |
38.2.0.a.1 |
$[]$ |
178752.ds1 |
178752jy1 |
178752.ds |
178752jy |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.187014678$ |
$1$ |
|
$2$ |
$506880$ |
$1.388334$ |
$70575104/61731$ |
$0.95058$ |
$3.26216$ |
$[0, -1, 0, 10715, -308867]$ |
\(y^2=x^3-x^2+10715x-308867\) |
38.2.0.a.1 |
$[(28, 111)]$ |
178752.il1 |
178752bx1 |
178752.il |
178752bx |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$506880$ |
$1.388334$ |
$70575104/61731$ |
$0.95058$ |
$3.26216$ |
$[0, 1, 0, 10715, 308867]$ |
\(y^2=x^3+x^2+10715x+308867\) |
38.2.0.a.1 |
$[]$ |
207936.fc1 |
207936gd1 |
207936.fc |
207936gd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{8} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.813493717$ |
$1$ |
|
$0$ |
$4423680$ |
$2.436905$ |
$70575104/61731$ |
$0.95058$ |
$4.24946$ |
$[0, 0, 0, 710448, 164835488]$ |
\(y^2=x^3+710448x+164835488\) |
38.2.0.a.1 |
$[(50521/5, 12407931/5)]$ |
207936.ff1 |
207936bx1 |
207936.ff |
207936bx |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{14} \cdot 3^{8} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4423680$ |
$2.436905$ |
$70575104/61731$ |
$0.95058$ |
$4.24946$ |
$[0, 0, 0, 710448, -164835488]$ |
\(y^2=x^3+710448x-164835488\) |
38.2.0.a.1 |
$[]$ |
216600.by1 |
216600ce1 |
216600.by |
216600ce |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$6.375563107$ |
$1$ |
|
$0$ |
$4838400$ |
$2.345741$ |
$70575104/61731$ |
$0.95058$ |
$4.14630$ |
$[0, -1, 0, 493367, -95555363]$ |
\(y^2=x^3-x^2+493367x-95555363\) |
38.2.0.a.1 |
$[(10327/7, 1444722/7)]$ |
231192.bi1 |
231192bi1 |
231192.bi |
231192bi |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$5.569844339$ |
$1$ |
|
$0$ |
$1769472$ |
$1.900585$ |
$70575104/61731$ |
$0.95058$ |
$3.69191$ |
$[0, 0, 0, 83148, -6599788]$ |
\(y^2=x^3+83148x-6599788\) |
38.2.0.a.1 |
$[(10348/7, 1548378/7)]$ |
241224.c1 |
241224c1 |
241224.c |
241224c |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{3} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1.738165358$ |
$1$ |
|
$2$ |
$1182720$ |
$1.636551$ |
$70575104/61731$ |
$0.95058$ |
$3.42360$ |
$[0, -1, 0, 28919, -1363331]$ |
\(y^2=x^3-x^2+28919x-1363331\) |
38.2.0.a.1 |
$[(100, 1587)]$ |
263568.m1 |
263568m1 |
263568.m |
263568m |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 17^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{2} \cdot 17^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$4.653346111$ |
$1$ |
|
$2$ |
$992256$ |
$1.485411$ |
$70575104/61731$ |
$0.95058$ |
$3.25400$ |
$[0, -1, 0, 15799, -551883]$ |
\(y^2=x^3-x^2+15799x-551883\) |
38.2.0.a.1 |
$[(92, 1293)]$ |
273600.da1 |
273600da1 |
273600.da |
273600da |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1720320$ |
$1.769403$ |
$70575104/61731$ |
$0.95058$ |
$3.51650$ |
$[0, 0, 0, 49200, 3004000]$ |
\(y^2=x^3+49200x+3004000\) |
38.2.0.a.1 |
$[]$ |
273600.nl1 |
273600nl1 |
273600.nl |
273600nl |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{8} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1720320$ |
$1.769403$ |
$70575104/61731$ |
$0.95058$ |
$3.51650$ |
$[0, 0, 0, 49200, -3004000]$ |
\(y^2=x^3+49200x-3004000\) |
38.2.0.a.1 |
$[]$ |
331056.bq1 |
331056bq1 |
331056.bq |
331056bq |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1827840$ |
$1.817059$ |
$70575104/61731$ |
$0.95058$ |
$3.50875$ |
$[0, 0, 0, 59532, -3998324]$ |
\(y^2=x^3+59532x-3998324\) |
38.2.0.a.1 |
$[]$ |
383496.t1 |
383496t1 |
383496.t |
383496t |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19 \cdot 29^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{3} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2322432$ |
$1.752453$ |
$70575104/61731$ |
$0.95058$ |
$3.40833$ |
$[0, 1, 0, 45975, 2728827]$ |
\(y^2=x^3+x^2+45975x+2728827\) |
38.2.0.a.1 |
$[]$ |
395352.x1 |
395352x1 |
395352.x |
395352x |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 17^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.096625067$ |
$1$ |
|
$4$ |
$3969024$ |
$2.034718$ |
$70575104/61731$ |
$0.95058$ |
$3.66310$ |
$[0, 0, 0, 142188, -14758652]$ |
\(y^2=x^3+142188x-14758652\) |
38.2.0.a.1 |
$[(98, 342)]$ |
424536.p1 |
424536p1 |
424536.p |
424536p |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 7^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.836141956$ |
$1$ |
|
$6$ |
$11404800$ |
$2.513981$ |
$70575104/61731$ |
$0.95058$ |
$4.08677$ |
$[0, -1, 0, 966999, 261430317]$ |
\(y^2=x^3-x^2+966999x+261430317\) |
38.2.0.a.1 |
$[(849, 41154)]$ |
433200.gf1 |
433200gf1 |
433200.gf |
433200gf |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$8.657513305$ |
$1$ |
|
$0$ |
$9676800$ |
$2.345741$ |
$70575104/61731$ |
$0.95058$ |
$3.92486$ |
$[0, 1, 0, 493367, 95555363]$ |
\(y^2=x^3+x^2+493367x+95555363\) |
38.2.0.a.1 |
$[(-304882/47, 517573281/47)]$ |
438216.h1 |
438216h1 |
438216.h |
438216h |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19 \cdot 31^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{3} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.381642465$ |
$1$ |
|
$0$ |
$2661120$ |
$1.785799$ |
$70575104/61731$ |
$0.95058$ |
$3.40413$ |
$[0, 1, 0, 52535, -3297013]$ |
\(y^2=x^3+x^2+52535x-3297013\) |
38.2.0.a.1 |
$[(1121/4, 54777/4)]$ |
441408.bl1 |
441408bl1 |
441408.bl |
441408bl |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 11^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$5.076421553$ |
$1$ |
|
$2$ |
$1827840$ |
$1.614326$ |
$70575104/61731$ |
$0.95058$ |
$3.24392$ |
$[0, -1, 0, 26459, 1175869]$ |
\(y^2=x^3-x^2+26459x+1175869\) |
38.2.0.a.1 |
$[(148, 2883)]$ |
441408.fp1 |
441408fp1 |
441408.fp |
441408fp |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11^{2} \cdot 19 \) |
\( - 2^{14} \cdot 3^{2} \cdot 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1827840$ |
$1.614326$ |
$70575104/61731$ |
$0.95058$ |
$3.24392$ |
$[0, 1, 0, 26459, -1175869]$ |
\(y^2=x^3+x^2+26459x-1175869\) |
38.2.0.a.1 |
$[]$ |
462384.do1 |
462384do1 |
462384.do |
462384do |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{8} \cdot 3^{8} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$3.107255382$ |
$1$ |
|
$2$ |
$3538944$ |
$1.900585$ |
$70575104/61731$ |
$0.95058$ |
$3.49572$ |
$[0, 0, 0, 83148, 6599788]$ |
\(y^2=x^3+83148x+6599788\) |
38.2.0.a.1 |
$[(689, 19773)]$ |
482448.bh1 |
482448bh1 |
482448.bh |
482448bh |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19 \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 19^{3} \cdot 23^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.103536049$ |
$1$ |
|
$4$ |
$2365440$ |
$1.636551$ |
$70575104/61731$ |
$0.95058$ |
$3.24227$ |
$[0, 1, 0, 28919, 1363331]$ |
\(y^2=x^3+x^2+28919x+1363331\) |
38.2.0.a.1 |
$[(773/2, 30153/2), (38, 1587)]$ |