Learn more

Refine search


Results (1-50 of 80 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
65.a2 65.a \( 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.187757049$ $[1, 0, 0, 4, 1]$ \(y^2+xy=x^3+4x+1\)
325.d2 325.d \( 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 100, 125]$ \(y^2+xy=x^3+x^2+100x+125\)
585.h2 585.h \( 3^{2} \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $0.819087883$ $[1, -1, 0, 36, -27]$ \(y^2+xy=x^3-x^2+36x-27\)
845.a2 845.a \( 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 672, 1523]$ \(y^2+xy+y=x^3+672x+1523\)
1040.f2 1040.f \( 2^{4} \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 64, -64]$ \(y^2=x^3-x^2+64x-64\)
2925.f2 2925.f \( 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.908981164$ $[1, -1, 1, 895, -2478]$ \(y^2+xy+y=x^3-x^2+895x-2478\)
3185.e2 3185.e \( 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 195, -148]$ \(y^2+xy+y=x^3+x^2+195x-148\)
4160.f2 4160.f \( 2^{6} \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 255, -257]$ \(y^2=x^3+x^2+255x-257\)
4160.q2 4160.q \( 2^{6} \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.245049170$ $[0, -1, 0, 255, 257]$ \(y^2=x^3-x^2+255x+257\)
4225.g2 4225.g \( 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.120546582$ $[1, 1, 1, 16812, 190406]$ \(y^2+xy+y=x^3+x^2+16812x+190406\)
5200.d2 5200.d \( 2^{4} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.937592521$ $[0, 1, 0, 1592, -4812]$ \(y^2=x^3+x^2+1592x-4812\)
7605.f2 7605.f \( 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 6052, -41128]$ \(y^2+xy+y=x^3-x^2+6052x-41128\)
7865.c2 7865.c \( 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.324359011$ $[1, 0, 1, 481, -849]$ \(y^2+xy+y=x^3+481x-849\)
9360.ca2 9360.ca \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 573, 1154]$ \(y^2=x^3+573x+1154\)
13520.ba2 13520.ba \( 2^{4} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.542998290$ $[0, -1, 0, 10760, -97488]$ \(y^2=x^3-x^2+10760x-97488\)
15925.p2 15925.p \( 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 4874, -28227]$ \(y^2+xy+y=x^3+4874x-28227\)
18785.b2 18785.b \( 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 1150, 3760]$ \(y^2+xy+y=x^3+x^2+1150x+3760\)
20800.u2 20800.u \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.168729099$ $[0, 1, 0, 6367, 44863]$ \(y^2=x^3+x^2+6367x+44863\)
20800.dl2 20800.dl \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 6367, -44863]$ \(y^2=x^3-x^2+6367x-44863\)
23465.d2 23465.d \( 5 \cdot 13 \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.032605012$ $[1, 1, 0, 1437, -3982]$ \(y^2+xy=x^3+x^2+1437x-3982\)
28665.bg2 28665.bg \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1755, 5746]$ \(y^2+xy=x^3-x^2+1755x+5746\)
34385.e2 34385.e \( 5 \cdot 13 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.591678640$ $[1, 0, 0, 2105, -7950]$ \(y^2+xy=x^3+2105x-7950\)
37440.h2 37440.h \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $1$ $\Z/2\Z$ $1.108626607$ $[0, 0, 0, 2292, -9232]$ \(y^2=x^3+2292x-9232\)
37440.cq2 37440.cq \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2292, 9232]$ \(y^2=x^3+2292x+9232\)
38025.cc2 38025.cc \( 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 151308, -4989659]$ \(y^2+xy=x^3-x^2+151308x-4989659\)
39325.h2 39325.h \( 5^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 12037, -106094]$ \(y^2+xy+y=x^3+x^2+12037x-106094\)
41405.m2 41405.m \( 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 32952, -489523]$ \(y^2+xy=x^3+x^2+32952x-489523\)
46800.p2 46800.p \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 14325, 144250]$ \(y^2=x^3+14325x+144250\)
50960.j2 50960.j \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.814079977$ $[0, 1, 0, 3120, 15700]$ \(y^2=x^3+x^2+3120x+15700\)
54080.e2 54080.e \( 2^{6} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 43039, -736865]$ \(y^2=x^3+x^2+43039x-736865\)
54080.da2 54080.da \( 2^{6} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.712114870$ $[0, -1, 0, 43039, 736865]$ \(y^2=x^3-x^2+43039x+736865\)
54665.h2 54665.h \( 5 \cdot 13 \cdot 29^{2} \) $1$ $\Z/2\Z$ $3.343588983$ $[1, 1, 0, 3347, 17682]$ \(y^2+xy=x^3+x^2+3347x+17682\)
62465.d2 62465.d \( 5 \cdot 13 \cdot 31^{2} \) $1$ $\Z/2\Z$ $3.428955624$ $[1, 1, 1, 3824, -18302]$ \(y^2+xy+y=x^3+x^2+3824x-18302\)
67600.w2 67600.w \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 268992, -11648012]$ \(y^2=x^3+x^2+268992x-11648012\)
70785.m2 70785.m \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.024937804$ $[1, -1, 1, 4333, 22916]$ \(y^2+xy+y=x^3-x^2+4333x+22916\)
88985.e2 88985.e \( 5 \cdot 13 \cdot 37^{2} \) $1$ $\Z/2\Z$ $2.573216329$ $[1, 0, 1, 5447, 34281]$ \(y^2+xy+y=x^3+5447x+34281\)
93925.q2 93925.q \( 5^{2} \cdot 13 \cdot 17^{2} \) $2$ $\Z/2\Z$ $3.143683094$ $[1, 0, 1, 28749, 412523]$ \(y^2+xy+y=x^3+28749x+412523\)
102245.d2 102245.d \( 5 \cdot 11^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.421626935$ $[1, 0, 0, 81370, -1946075]$ \(y^2+xy=x^3+81370x-1946075\)
109265.e2 109265.e \( 5 \cdot 13 \cdot 41^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 6689, 48814]$ \(y^2+xy+y=x^3+x^2+6689x+48814\)
117325.e2 117325.e \( 5^{2} \cdot 13 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 35912, -569583]$ \(y^2+xy=x^3+35912x-569583\)
120185.f2 120185.f \( 5 \cdot 13 \cdot 43^{2} \) $1$ $\Z/2\Z$ $20.81468253$ $[1, 1, 0, 7358, -50031]$ \(y^2+xy=x^3+x^2+7358x-50031\)
121680.d2 121680.d \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.458965323$ $[0, 0, 0, 96837, 2535338]$ \(y^2=x^3+96837x+2535338\)
125840.cm2 125840.cm \( 2^{4} \cdot 5 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 7704, 54320]$ \(y^2=x^3-x^2+7704x+54320\)
143325.be2 143325.be \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.692757074$ $[1, -1, 1, 43870, 762122]$ \(y^2+xy+y=x^3-x^2+43870x+762122\)
143585.b2 143585.b \( 5 \cdot 13 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 8790, -68603]$ \(y^2+xy=x^3+8790x-68603\)
169065.bd2 169065.bd \( 3^{2} \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 10350, -91175]$ \(y^2+xy=x^3-x^2+10350x-91175\)
171925.v2 171925.v \( 5^{2} \cdot 13 \cdot 23^{2} \) $1$ $\Z/2\Z$ $9.683360425$ $[1, 1, 0, 52625, -993750]$ \(y^2+xy=x^3+x^2+52625x-993750\)
182585.e2 182585.e \( 5 \cdot 13 \cdot 53^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 11178, 104081]$ \(y^2+xy=x^3+x^2+11178x+104081\)
187200.u2 187200.u \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.566762393$ $[0, 0, 0, 57300, 1154000]$ \(y^2=x^3+57300x+1154000\)
187200.pu2 187200.pu \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 57300, -1154000]$ \(y^2=x^3+57300x-1154000\)
Next   Download to