Learn more

Refine search


Results (1-50 of 84 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
57.c4 57.c \( 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 8, 29]$ \(y^2+xy+y=x^3+8x+29\) 2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 12.24.0-12.g.1.1, 152.24.0.?, $\ldots$
171.a4 171.a \( 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 76, -790]$ \(y^2+xy+y=x^3-x^2+76x-790\) 2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 12.24.0-12.g.1.1, 152.24.0.?, $\ldots$
912.b4 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/4\Z$ $2.601893913$ $[0, -1, 0, 136, -1872]$ \(y^2=x^3-x^2+136x-1872\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 12.24.0-12.g.1.2, 152.24.0.?, $\ldots$
1083.a4 1083.a \( 3 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 3061, -194500]$ \(y^2+xy+y=x^3+x^2+3061x-194500\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.5, 12.12.0.g.1, $\ldots$
1425.a4 1425.a \( 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.563685169$ $[1, 1, 1, 212, 3656]$ \(y^2+xy+y=x^3+x^2+212x+3656\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 20.12.0-4.c.1.1, $\ldots$
2736.s4 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 1221, 49322]$ \(y^2=x^3+1221x+49322\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 12.24.0-12.g.1.2, 152.24.0.?, $\ldots$
2793.i4 2793.i \( 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.637562893$ $[1, 1, 0, 416, -9617]$ \(y^2+xy=x^3+x^2+416x-9617\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$
3249.g4 3249.g \( 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.892773922$ $[1, -1, 0, 27549, 5279044]$ \(y^2+xy=x^3-x^2+27549x+5279044\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.1, 12.12.0.g.1, $\ldots$
3648.o4 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 543, 14433]$ \(y^2=x^3-x^2+543x+14433\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.3, 12.12.0.g.1, $\ldots$
3648.bf4 3648.bf \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $8.425500244$ $[0, 1, 0, 543, -14433]$ \(y^2=x^3+x^2+543x-14433\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.4, 12.12.0.g.1, $\ldots$
4275.m4 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1908, -96809]$ \(y^2+xy=x^3-x^2+1908x-96809\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 20.12.0-4.c.1.1, $\ldots$
6897.a4 6897.a \( 3 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 1026, -37905]$ \(y^2+xy=x^3+1026x-37905\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 44.12.0-4.c.1.1, $\ldots$
8379.e4 8379.e \( 3^{2} \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z$ $0.460486004$ $[1, -1, 1, 3739, 263400]$ \(y^2+xy+y=x^3-x^2+3739x+263400\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$
9633.h4 9633.h \( 3 \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.593429450$ $[1, 0, 0, 1433, 62828]$ \(y^2+xy=x^3+1433x+62828\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 52.12.0-4.c.1.1, $\ldots$
10944.n4 10944.n \( 2^{6} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $4.215781293$ $[0, 0, 0, 4884, 394576]$ \(y^2=x^3+4884x+394576\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.4, 12.12.0.g.1, $\ldots$
10944.o4 10944.o \( 2^{6} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.522163807$ $[0, 0, 0, 4884, -394576]$ \(y^2=x^3+4884x-394576\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.3, 12.12.0.g.1, $\ldots$
16473.e4 16473.e \( 3 \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z$ $11.07909392$ $[1, 1, 0, 2451, 141252]$ \(y^2+xy=x^3+x^2+2451x+141252\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 68.12.0-4.c.1.1, $\ldots$
17328.u4 17328.u \( 2^{4} \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 48976, 12545940]$ \(y^2=x^3+x^2+48976x+12545940\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.5, 12.12.0.g.1, $\ldots$
20691.p4 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 9234, 1023435]$ \(y^2+xy=x^3-x^2+9234x+1023435\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 44.12.0-4.c.1.1, $\ldots$
22800.cw4 22800.cw \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 3392, -227212]$ \(y^2=x^3+x^2+3392x-227212\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 20.12.0-4.c.1.2, $\ldots$
27075.s4 27075.s \( 3 \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $27.07371528$ $[1, 0, 1, 76524, -24465527]$ \(y^2+xy+y=x^3+76524x-24465527\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 40.12.0-4.c.1.5, $\ldots$
28899.m4 28899.m \( 3^{2} \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.671404701$ $[1, -1, 0, 12897, -1696356]$ \(y^2+xy=x^3-x^2+12897x-1696356\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 52.12.0-4.c.1.1, $\ldots$
30153.g4 30153.g \( 3 \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 4485, -346907]$ \(y^2+xy+y=x^3+4485x-346907\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 92.12.0.?, $\ldots$
44688.di4 44688.di \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 6648, 628788]$ \(y^2=x^3+x^2+6648x+628788\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.2, $\ldots$
47937.b4 47937.b \( 3 \cdot 19 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 7131, 699102]$ \(y^2+xy+y=x^3+x^2+7131x+699102\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 116.12.0.?, $\ldots$
49419.d4 49419.d \( 3^{2} \cdot 17^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 22054, -3791748]$ \(y^2+xy+y=x^3-x^2+22054x-3791748\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 68.12.0-4.c.1.1, $\ldots$
51984.ci4 51984.ci \( 2^{4} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 440781, -338299598]$ \(y^2=x^3+440781x-338299598\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.1, 12.12.0.g.1, $\ldots$
53067.j4 53067.j \( 3 \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 149988, 67163403]$ \(y^2+xy=x^3+149988x+67163403\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 56.12.0-4.c.1.5, $\ldots$
54777.c4 54777.c \( 3 \cdot 19 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 8149, -846924]$ \(y^2+xy=x^3+x^2+8149x-846924\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 124.12.0.?, $\ldots$
68400.dj4 68400.dj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $2$ $\Z/2\Z$ $2.301853412$ $[0, 0, 0, 30525, 6165250]$ \(y^2=x^3+30525x+6165250\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 20.12.0-4.c.1.2, $\ldots$
69312.bp4 69312.bp \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $18.20872277$ $[0, -1, 0, 195903, 100171617]$ \(y^2=x^3-x^2+195903x+100171617\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.2, 12.12.0.g.1, $\ldots$
69312.dn4 69312.dn \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $40.56979582$ $[0, 1, 0, 195903, -100171617]$ \(y^2=x^3+x^2+195903x-100171617\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.2, 12.12.0.g.1, $\ldots$
69825.q4 69825.q \( 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 10387, -1222908]$ \(y^2+xy=x^3+10387x-1222908\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 140.12.0.?, $\ldots$
78033.a4 78033.a \( 3 \cdot 19 \cdot 37^{2} \) $1$ $\Z/2\Z$ $3.755208620$ $[1, 0, 0, 11608, 1446747]$ \(y^2+xy=x^3+11608x+1446747\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 148.12.0.?, $\ldots$
81225.k4 81225.k \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.640861354$ $[1, -1, 1, 688720, 660569222]$ \(y^2+xy+y=x^3-x^2+688720x+660569222\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 40.12.0-4.c.1.3, $\ldots$
90459.f4 90459.f \( 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 40369, 9366482]$ \(y^2+xy+y=x^3-x^2+40369x+9366482\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 92.12.0.?, $\ldots$
91200.cp4 91200.cp \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 13567, -1831263]$ \(y^2=x^3-x^2+13567x-1831263\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 40.12.0-4.c.1.2, $\ldots$
91200.ha4 91200.ha \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $7.024819109$ $[0, 1, 0, 13567, 1831263]$ \(y^2=x^3+x^2+13567x+1831263\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 40.12.0-4.c.1.1, $\ldots$
95817.i4 95817.i \( 3 \cdot 19 \cdot 41^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 14254, 1973139]$ \(y^2+xy=x^3+x^2+14254x+1973139\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 152.12.0.?, $\ldots$
105393.d4 105393.d \( 3 \cdot 19 \cdot 43^{2} \) $1$ $\Z/2\Z$ $4.908045001$ $[1, 1, 1, 15678, -2262822]$ \(y^2+xy+y=x^3+x^2+15678x-2262822\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 152.12.0.?, $\ldots$
110352.j4 110352.j \( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.312229312$ $[0, -1, 0, 16416, 2425920]$ \(y^2=x^3-x^2+16416x+2425920\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 44.12.0-4.c.1.2, $\ldots$
125913.h4 125913.h \( 3 \cdot 19 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 18730, -2961841]$ \(y^2+xy+y=x^3+18730x-2961841\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 152.12.0.?, $\ldots$
131043.w4 131043.w \( 3 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $22.51976855$ $[1, 1, 0, 370379, 260731156]$ \(y^2+xy=x^3+x^2+370379x+260731156\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 88.12.0.?, $\ldots$
134064.bm4 134064.bm \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z$ $3.944542647$ $[0, 0, 0, 59829, -16917446]$ \(y^2=x^3+59829x-16917446\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 28.12.0-4.c.1.2, $\ldots$
143811.p4 143811.p \( 3^{2} \cdot 19 \cdot 29^{2} \) $1$ $\Z/2\Z$ $7.722932003$ $[1, -1, 0, 64179, -18811580]$ \(y^2+xy=x^3-x^2+64179x-18811580\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 116.12.0.?, $\ldots$
154128.bk4 154128.bk \( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 22928, -4020992]$ \(y^2=x^3-x^2+22928x-4020992\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 52.12.0-4.c.1.2, $\ldots$
159201.bi4 159201.bi \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1349892, -1813411881]$ \(y^2+xy=x^3-x^2+1349892x-1813411881\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 56.12.0-4.c.1.3, $\ldots$
160113.d4 160113.d \( 3 \cdot 19 \cdot 53^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 23818, 4259294]$ \(y^2+xy+y=x^3+x^2+23818x+4259294\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 152.12.0.?, $\ldots$
164331.a4 164331.a \( 3^{2} \cdot 19 \cdot 31^{2} \) $1$ $\Z/2\Z$ $2.250733793$ $[1, -1, 1, 73336, 22940286]$ \(y^2+xy+y=x^3-x^2+73336x+22940286\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 124.12.0.?, $\ldots$
172425.ca4 172425.ca \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $8.438248739$ $[1, 1, 0, 25650, -4738125]$ \(y^2+xy=x^3+x^2+25650x-4738125\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 152.12.0.?, $\ldots$
Next   displayed columns for results