| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 88800.x1 |
88800bt1 |
88800.x |
88800bt |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$1.101909018$ |
$1$ |
|
$4$ |
$179200$ |
$1.076403$ |
$636056/2997$ |
$0.80638$ |
$3.16411$ |
$[0, -1, 0, 1792, 77412]$ |
\(y^2=x^3-x^2+1792x+77412\) |
1480.2.0.? |
$[(-8, 250)]$ |
| 88800.bb1 |
88800bw1 |
88800.bb |
88800bw |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35840$ |
$0.271683$ |
$636056/2997$ |
$0.80638$ |
$2.31660$ |
$[0, -1, 0, 72, -648]$ |
\(y^2=x^3-x^2+72x-648\) |
1480.2.0.? |
$[ ]$ |
| 88800.bo1 |
88800bb1 |
88800.bo |
88800bb |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$0.589037887$ |
$1$ |
|
$14$ |
$35840$ |
$0.271683$ |
$636056/2997$ |
$0.80638$ |
$2.31660$ |
$[0, 1, 0, 72, 648]$ |
\(y^2=x^3+x^2+72x+648\) |
1480.2.0.? |
$[(18, 90), (3, 30)]$ |
| 88800.bs1 |
88800y1 |
88800.bs |
88800y |
$1$ |
$1$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$2.463715656$ |
$1$ |
|
$0$ |
$179200$ |
$1.076403$ |
$636056/2997$ |
$0.80638$ |
$3.16411$ |
$[0, 1, 0, 1792, -77412]$ |
\(y^2=x^3+x^2+1792x-77412\) |
1480.2.0.? |
$[(157/2, 1875/2)]$ |
| 177600.r1 |
177600hd1 |
177600.r |
177600hd |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$1.580578573$ |
$1$ |
|
$2$ |
$716800$ |
$1.422976$ |
$636056/2997$ |
$0.80638$ |
$3.32673$ |
$[0, -1, 0, 7167, -626463]$ |
\(y^2=x^3-x^2+7167x-626463\) |
1480.2.0.? |
$[(267, 4500)]$ |
| 177600.bb1 |
177600hf1 |
177600.bb |
177600hf |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$0.732192550$ |
$1$ |
|
$14$ |
$143360$ |
$0.618257$ |
$636056/2997$ |
$0.80638$ |
$2.52783$ |
$[0, -1, 0, 287, 4897]$ |
\(y^2=x^3-x^2+287x+4897\) |
1480.2.0.? |
$[(1, 72), (17, 120)]$ |
| 177600.il1 |
177600fg1 |
177600.il |
177600fg |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$0.412567696$ |
$1$ |
|
$6$ |
$143360$ |
$0.618257$ |
$636056/2997$ |
$0.80638$ |
$2.52783$ |
$[0, 1, 0, 287, -4897]$ |
\(y^2=x^3+x^2+287x-4897\) |
1480.2.0.? |
$[(23, 120)]$ |
| 177600.ix1 |
177600fj1 |
177600.ix |
177600fj |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 37 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$716800$ |
$1.422976$ |
$636056/2997$ |
$0.80638$ |
$3.32673$ |
$[0, 1, 0, 7167, 626463]$ |
\(y^2=x^3+x^2+7167x+626463\) |
1480.2.0.? |
$[ ]$ |
| 266400.o1 |
266400o1 |
266400.o |
266400o |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1433600$ |
$1.625708$ |
$636056/2997$ |
$0.80638$ |
$3.41350$ |
$[0, 0, 0, 16125, 2106250]$ |
\(y^2=x^3+16125x+2106250\) |
1480.2.0.? |
$[ ]$ |
| 266400.z1 |
266400z1 |
266400.z |
266400z |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$2.110813556$ |
$1$ |
|
$2$ |
$286720$ |
$0.820989$ |
$636056/2997$ |
$0.80638$ |
$2.64052$ |
$[0, 0, 0, 645, -16850]$ |
\(y^2=x^3+645x-16850\) |
1480.2.0.? |
$[(29, 162)]$ |
| 266400.ee1 |
266400ee1 |
266400.ee |
266400ee |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$286720$ |
$0.820989$ |
$636056/2997$ |
$0.80638$ |
$2.64052$ |
$[0, 0, 0, 645, 16850]$ |
\(y^2=x^3+645x+16850\) |
1480.2.0.? |
$[ ]$ |
| 266400.ep1 |
266400ep1 |
266400.ep |
266400ep |
$1$ |
$1$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1480$ |
$2$ |
$0$ |
$4.529400238$ |
$1$ |
|
$2$ |
$1433600$ |
$1.625708$ |
$636056/2997$ |
$0.80638$ |
$3.41350$ |
$[0, 0, 0, 16125, -2106250]$ |
\(y^2=x^3+16125x-2106250\) |
1480.2.0.? |
$[(469, 10422)]$ |