Learn more

Refine search


Results (1-50 of 86 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
55.a4 55.a \( 5 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1, 0]$ \(y^2+xy=x^3-x^2+x\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.2, 40.24.0-40.z.1.10, $\ldots$
275.a4 275.a \( 5^{2} \cdot 11 \) $1$ $\Z/4\Z$ $2.384490492$ $[1, -1, 1, 20, 22]$ \(y^2+xy+y=x^3-x^2+20x+22\) 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.4, 88.24.0.?, 110.6.0.?, $\ldots$
495.a4 495.a \( 3^{2} \cdot 5 \cdot 11 \) $1$ $\Z/2\Z$ $1.318631780$ $[1, -1, 1, 7, -8]$ \(y^2+xy+y=x^3-x^2+7x-8\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 60.12.0-4.c.1.2, $\ldots$
605.b4 605.b \( 5 \cdot 11^{2} \) $1$ $\Z/4\Z$ $5.638786672$ $[1, -1, 1, 98, -316]$ \(y^2+xy+y=x^3-x^2+98x-316\) 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.13, 88.24.0.?, 110.6.0.?, $\ldots$
880.h4 880.h \( 2^{4} \cdot 5 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 13, -14]$ \(y^2=x^3+13x-14\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 20.12.0-4.c.1.1, 40.24.0-40.z.1.2, $\ldots$
2475.i4 2475.i \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.314990037$ $[1, -1, 0, 183, -784]$ \(y^2+xy=x^3-x^2+183x-784\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 88.12.0.?, $\ldots$
2695.c4 2695.c \( 5 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 40, -85]$ \(y^2+xy=x^3-x^2+40x-85\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 56.12.0-4.c.1.5, 88.12.0.?, $\ldots$
3025.f4 3025.f \( 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 2458, -37009]$ \(y^2+xy=x^3-x^2+2458x-37009\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 20.12.0-4.c.1.2, 40.24.0-40.z.1.7, $\ldots$
3520.n4 3520.n \( 2^{6} \cdot 5 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 52, -112]$ \(y^2=x^3+52x-112\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 40.24.0-40.z.1.9, 88.24.0.?, $\ldots$
3520.p4 3520.p \( 2^{6} \cdot 5 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 52, 112]$ \(y^2=x^3+52x+112\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 40.24.0-40.z.1.1, 88.24.0.?, $\ldots$
4400.p4 4400.p \( 2^{4} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.150237309$ $[0, 0, 0, 325, -1750]$ \(y^2=x^3+325x-1750\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.12, 88.24.0.?, 110.6.0.?, $\ldots$
5445.i4 5445.i \( 3^{2} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $6.027150387$ $[1, -1, 0, 885, 7640]$ \(y^2+xy=x^3-x^2+885x+7640\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 88.12.0.?, $\ldots$
7920.i4 7920.i \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) $1$ $\Z/2\Z$ $1.664591700$ $[0, 0, 0, 117, 378]$ \(y^2=x^3+117x+378\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 60.12.0-4.c.1.1, $\ldots$
9295.b4 9295.b \( 5 \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 137, 446]$ \(y^2+xy+y=x^3-x^2+137x+446\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 104.12.0.?, $\ldots$
9680.r4 9680.r \( 2^{4} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1573, 18634]$ \(y^2=x^3+1573x+18634\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.5, 88.24.0.?, 110.6.0.?, $\ldots$
13475.c4 13475.c \( 5^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 995, -9628]$ \(y^2+xy+y=x^3-x^2+995x-9628\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0.z.1, 88.12.0.?, $\ldots$
15895.g4 15895.g \( 5 \cdot 11 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 235, 1016]$ \(y^2+xy=x^3-x^2+235x+1016\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
17600.bs4 17600.bs \( 2^{6} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1300, -14000]$ \(y^2=x^3+1300x-14000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 40.24.0-40.z.1.3, 88.24.0.?, $\ldots$
17600.bu4 17600.bu \( 2^{6} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1300, 14000]$ \(y^2=x^3+1300x+14000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.z.1.11, 88.24.0.?, $\ldots$
19855.b4 19855.b \( 5 \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $7.832155802$ $[1, -1, 1, 293, -1574]$ \(y^2+xy+y=x^3-x^2+293x-1574\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
24255.n4 24255.n \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.079192013$ $[1, -1, 1, 358, 1936]$ \(y^2+xy+y=x^3-x^2+358x+1936\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
27225.l4 27225.l \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.189627184$ $[1, -1, 1, 22120, 977122]$ \(y^2+xy+y=x^3-x^2+22120x+977122\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.5, 40.12.0.z.1, 60.12.0-4.c.1.2, $\ldots$
29095.d4 29095.d \( 5 \cdot 11 \cdot 23^{2} \) $1$ $\Z/2\Z$ $14.26918008$ $[1, -1, 0, 430, -2769]$ \(y^2+xy=x^3-x^2+430x-2769\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
29645.c4 29645.c \( 5 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.540805159$ $[1, -1, 1, 4817, 98662]$ \(y^2+xy+y=x^3-x^2+4817x+98662\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0.z.1, 88.12.0.?, $\ldots$
31680.cs4 31680.cs \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \) $1$ $\Z/2\Z$ $3.984641109$ $[0, 0, 0, 468, -3024]$ \(y^2=x^3+468x-3024\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 40.12.0.z.1, 88.12.0.?, $\ldots$
31680.df4 31680.df \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 11 \) $1$ $\Z/2\Z$ $3.487790304$ $[0, 0, 0, 468, 3024]$ \(y^2=x^3+468x+3024\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 40.12.0.z.1, 88.12.0.?, $\ldots$
38720.bq4 38720.bq \( 2^{6} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 6292, -149072]$ \(y^2=x^3+6292x-149072\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.z.1.6, 88.24.0.?, $\ldots$
38720.br4 38720.br \( 2^{6} \cdot 5 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.711242981$ $[0, 0, 0, 6292, 149072]$ \(y^2=x^3+6292x+149072\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 40.24.0-40.z.1.14, 88.24.0.?, $\ldots$
39600.cj4 39600.cj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.781350496$ $[0, 0, 0, 2925, 47250]$ \(y^2=x^3+2925x+47250\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.z.1, 88.12.0.?, $\ldots$
43120.bk4 43120.bk \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 11 \) $2$ $\Z/2\Z$ $2.718842749$ $[0, 0, 0, 637, 4802]$ \(y^2=x^3+637x+4802\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 56.12.0-4.c.1.5, 88.12.0.?, $\ldots$
46255.e4 46255.e \( 5 \cdot 11 \cdot 29^{2} \) $1$ $\Z/2\Z$ $9.890602434$ $[1, -1, 1, 683, 5164]$ \(y^2+xy+y=x^3-x^2+683x+5164\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
46475.i4 46475.i \( 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 3433, 59216]$ \(y^2+xy=x^3-x^2+3433x+59216\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 52.12.0-4.c.1.2, 88.12.0.?, $\ldots$
48400.bt4 48400.bt \( 2^{4} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.618435527$ $[0, 0, 0, 39325, 2329250]$ \(y^2=x^3+39325x+2329250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 20.12.0-4.c.1.1, 40.24.0-40.z.1.15, $\ldots$
52855.e4 52855.e \( 5 \cdot 11 \cdot 31^{2} \) $2$ $\Z/2\Z$ $18.97144899$ $[1, -1, 0, 781, -6712]$ \(y^2+xy=x^3-x^2+781x-6712\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
75295.b4 75295.b \( 5 \cdot 11 \cdot 37^{2} \) $1$ $\Z/2\Z$ $6.108594739$ $[1, -1, 1, 1112, 10802]$ \(y^2+xy+y=x^3-x^2+1112x+10802\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
79475.m4 79475.m \( 5^{2} \cdot 11 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 5870, 132872]$ \(y^2+xy+y=x^3-x^2+5870x+132872\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 68.12.0-4.c.1.2, 88.12.0.?, $\ldots$
83655.bb4 83655.bb \( 3^{2} \cdot 5 \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.656350492$ $[1, -1, 0, 1236, -13285]$ \(y^2+xy=x^3-x^2+1236x-13285\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
87120.bk4 87120.bk \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 14157, -503118]$ \(y^2=x^3+14157x-503118\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.z.1, 88.12.0.?, $\ldots$
92455.p4 92455.p \( 5 \cdot 11 \cdot 41^{2} \) $1$ $\Z/2\Z$ $20.59948470$ $[1, -1, 0, 1366, 14735]$ \(y^2+xy=x^3-x^2+1366x+14735\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
99275.d4 99275.d \( 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z$ $18.27422123$ $[1, -1, 0, 7333, -189384]$ \(y^2+xy=x^3-x^2+7333x-189384\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 76.12.0.?, 88.12.0.?, $\ldots$
101695.b4 101695.b \( 5 \cdot 11 \cdot 43^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 1502, -17768]$ \(y^2+xy+y=x^3-x^2+1502x-17768\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
102245.j4 102245.j \( 5 \cdot 11^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 16615, -643824]$ \(y^2+xy=x^3-x^2+16615x-643824\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 52.12.0-4.c.1.2, 88.12.0.?, $\ldots$
121275.fl4 121275.fl \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 8958, 250991]$ \(y^2+xy=x^3-x^2+8958x+250991\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 84.12.0.?, 88.12.0.?, $\ldots$
121495.c4 121495.c \( 5 \cdot 11 \cdot 47^{2} \) $1$ $\Z/2\Z$ $24.82705582$ $[1, -1, 0, 1795, -23160]$ \(y^2+xy=x^3-x^2+1795x-23160\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
143055.m4 143055.m \( 3^{2} \cdot 5 \cdot 11 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.316973142$ $[1, -1, 1, 2113, -29546]$ \(y^2+xy+y=x^3-x^2+2113x-29546\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
145475.f4 145475.f \( 5^{2} \cdot 11 \cdot 23^{2} \) $1$ $\Z/2\Z$ $12.82808208$ $[1, -1, 1, 10745, -335378]$ \(y^2+xy+y=x^3-x^2+10745x-335378\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 92.12.0.?, $\ldots$
148225.cb4 148225.cb \( 5^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.778203632$ $[1, -1, 0, 120433, 12453216]$ \(y^2+xy=x^3-x^2+120433x+12453216\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 56.12.0-4.c.1.3, 88.12.0.?, $\ldots$
148720.ba4 148720.ba \( 2^{4} \cdot 5 \cdot 11 \cdot 13^{2} \) $2$ $\Z/2\Z$ $6.114375640$ $[0, 0, 0, 2197, -30758]$ \(y^2=x^3+2197x-30758\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 104.12.0.?, $\ldots$
154495.b4 154495.b \( 5 \cdot 11 \cdot 53^{2} \) $1$ $\Z/2\Z$ $14.05801228$ $[1, -1, 1, 2282, 31996]$ \(y^2+xy+y=x^3-x^2+2282x+31996\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$
158400.hk4 158400.hk \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 11700, -378000]$ \(y^2=x^3+11700x-378000\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 40.12.0.z.1, 88.12.0.?, $\ldots$
Next   displayed columns for results