Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
378.d3 378.d \( 2 \cdot 3^{3} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 93, -235]$ \(y^2+xy=x^3-x^2+93x-235\) 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 63.72.0-63.d.1.3, 168.16.0.?, 504.144.3.?
378.e3 378.e \( 2 \cdot 3^{3} \cdot 7 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 10, 5]$ \(y^2+xy+y=x^3-x^2+10x+5\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 63.72.0-63.d.1.4, 168.16.0.?, 504.144.3.?
2646.f3 2646.f \( 2 \cdot 3^{3} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.424276273$ $[1, -1, 0, 4548, 71504]$ \(y^2+xy=x^3-x^2+4548x+71504\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 24.8.0-3.a.1.8, 63.72.0-63.d.1.2, $\ldots$
2646.y3 2646.y \( 2 \cdot 3^{3} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.179845539$ $[1, -1, 1, 505, -2817]$ \(y^2+xy+y=x^3-x^2+505x-2817\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 24.8.0-3.a.1.7, 63.72.0-63.d.1.1, $\ldots$
3024.o3 3024.o \( 2^{4} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.444680419$ $[0, 0, 0, 1485, 13554]$ \(y^2=x^3+1485x+13554\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 63.36.0.d.1, $\ldots$
3024.p3 3024.p \( 2^{4} \cdot 3^{3} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 165, -502]$ \(y^2=x^3+165x-502\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 63.36.0.d.1, $\ldots$
9450.l3 9450.l \( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.521740679$ $[1, -1, 0, 258, 916]$ \(y^2+xy=x^3-x^2+258x+916\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 63.36.0.d.1, $\ldots$
9450.cl3 9450.cl \( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.240989843$ $[1, -1, 1, 2320, -27053]$ \(y^2+xy+y=x^3-x^2+2320x-27053\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 63.36.0.d.1, $\ldots$
12096.bn3 12096.bn \( 2^{6} \cdot 3^{3} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 5940, 108432]$ \(y^2=x^3+5940x+108432\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 42.8.0-3.a.1.2, 63.36.0.d.1, $\ldots$
12096.bo3 12096.bo \( 2^{6} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.653262310$ $[0, 0, 0, 660, -4016]$ \(y^2=x^3+660x-4016\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 42.8.0-3.a.1.1, 63.36.0.d.1, $\ldots$
12096.br3 12096.br \( 2^{6} \cdot 3^{3} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.996850642$ $[0, 0, 0, 5940, -108432]$ \(y^2=x^3+5940x-108432\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 63.36.0.d.1, 72.24.0.?, $\ldots$
12096.bs3 12096.bs \( 2^{6} \cdot 3^{3} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 660, 4016]$ \(y^2=x^3+660x+4016\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 63.36.0.d.1, 72.24.0.?, $\ldots$
21168.bu3 21168.bu \( 2^{4} \cdot 3^{3} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 8085, 172186]$ \(y^2=x^3+8085x+172186\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 63.36.0.d.1, 72.24.0.?, $\ldots$
21168.bx3 21168.bx \( 2^{4} \cdot 3^{3} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.975284045$ $[0, 0, 0, 72765, -4649022]$ \(y^2=x^3+72765x-4649022\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 63.36.0.d.1, 72.24.0.?, $\ldots$
45738.u3 45738.u \( 2 \cdot 3^{3} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.768091744$ $[1, -1, 0, 1248, -10752]$ \(y^2+xy=x^3-x^2+1248x-10752\) 3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.2, 63.36.0.d.1, 99.24.0.?, $\ldots$
45738.cs3 45738.cs \( 2 \cdot 3^{3} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.268783068$ $[1, -1, 1, 11230, 279073]$ \(y^2+xy+y=x^3-x^2+11230x+279073\) 3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.1, 63.36.0.d.1, 99.24.0.?, $\ldots$
63882.q3 63882.q \( 2 \cdot 3^{3} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1743, 16797]$ \(y^2+xy=x^3-x^2+1743x+16797\) 3.4.0.a.1, 9.12.0.a.1, 39.8.0-3.a.1.1, 63.36.0.d.1, 117.24.0.?, $\ldots$
63882.cj3 63882.cj \( 2 \cdot 3^{3} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 15685, -469205]$ \(y^2+xy+y=x^3-x^2+15685x-469205\) 3.4.0.a.1, 9.12.0.a.1, 39.8.0-3.a.1.2, 63.36.0.d.1, 117.24.0.?, $\ldots$
66150.da3 66150.da \( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.188805584$ $[1, -1, 0, 12633, -339459]$ \(y^2+xy=x^3-x^2+12633x-339459\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 105.8.0.?, 120.8.0.?, $\ldots$
66150.if3 66150.if \( 2 \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.320437907$ $[1, -1, 1, 113695, 9051697]$ \(y^2+xy+y=x^3-x^2+113695x+9051697\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 105.8.0.?, 120.8.0.?, $\ldots$
75600.fz3 75600.fz \( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $2$ $\mathsf{trivial}$ $3.263495317$ $[0, 0, 0, 4125, -62750]$ \(y^2=x^3+4125x-62750\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 63.36.0.d.1, 168.8.0.?, $\ldots$
75600.gb3 75600.gb \( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $5.943497804$ $[0, 0, 0, 37125, 1694250]$ \(y^2=x^3+37125x+1694250\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 63.36.0.d.1, 168.8.0.?, $\ldots$
84672.fq3 84672.fq \( 2^{6} \cdot 3^{3} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.104719156$ $[0, 0, 0, 32340, 1377488]$ \(y^2=x^3+32340x+1377488\) 3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 63.36.0.d.1, $\ldots$
84672.fr3 84672.fr \( 2^{6} \cdot 3^{3} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.276867253$ $[0, 0, 0, 32340, -1377488]$ \(y^2=x^3+32340x-1377488\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 36.24.0-9.a.1.3, 63.36.0.d.1, $\ldots$
84672.fw3 84672.fw \( 2^{6} \cdot 3^{3} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 291060, -37192176]$ \(y^2=x^3+291060x-37192176\) 3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 63.36.0.d.1, $\ldots$
84672.fx3 84672.fx \( 2^{6} \cdot 3^{3} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 291060, 37192176]$ \(y^2=x^3+291060x+37192176\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 36.24.0-9.a.1.4, 63.36.0.d.1, $\ldots$
109242.p3 109242.p \( 2 \cdot 3^{3} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 26823, -1047187]$ \(y^2+xy=x^3-x^2+26823x-1047187\) 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 63.36.0.d.1, 153.24.0.?, $\ldots$
109242.bt3 109242.bt \( 2 \cdot 3^{3} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 2980, 37791]$ \(y^2+xy+y=x^3-x^2+2980x+37791\) 3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.2, 63.36.0.d.1, 153.24.0.?, $\ldots$
136458.n3 136458.n \( 2 \cdot 3^{3} \cdot 7 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.862153468$ $[1, -1, 0, 3723, -54731]$ \(y^2+xy=x^3-x^2+3723x-54731\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 63.36.0.d.1, 168.8.0.?, $\ldots$
136458.bv3 136458.bv \( 2 \cdot 3^{3} \cdot 7 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.684406445$ $[1, -1, 1, 33505, 1444231]$ \(y^2+xy+y=x^3-x^2+33505x+1444231\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 63.36.0.d.1, 168.8.0.?, $\ldots$
199962.f3 199962.f \( 2 \cdot 3^{3} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 49098, 2564468]$ \(y^2+xy=x^3-x^2+49098x+2564468\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 69.8.0-3.a.1.1, 168.8.0.?, $\ldots$
199962.bk3 199962.bk \( 2 \cdot 3^{3} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 5455, -96799]$ \(y^2+xy+y=x^3-x^2+5455x-96799\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 69.8.0-3.a.1.2, 168.8.0.?, $\ldots$
302400.fy3 302400.fy \( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 16500, 502000]$ \(y^2=x^3+16500x+502000\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 120.8.0.?, 168.8.0.?, $\ldots$
302400.ga3 302400.ga \( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $11.44931095$ $[0, 0, 0, 148500, -13554000]$ \(y^2=x^3+148500x-13554000\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 120.8.0.?, 168.8.0.?, $\ldots$
302400.qz3 302400.qz \( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $7.221151331$ $[0, 0, 0, 16500, -502000]$ \(y^2=x^3+16500x-502000\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 120.8.0.?, 168.8.0.?, $\ldots$
302400.rb3 302400.rb \( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 148500, 13554000]$ \(y^2=x^3+148500x+13554000\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 120.8.0.?, 168.8.0.?, $\ldots$
317898.o3 317898.o \( 2 \cdot 3^{3} \cdot 7 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 8673, 189133]$ \(y^2+xy=x^3-x^2+8673x+189133\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 87.8.0.?, 168.8.0.?, $\ldots$
317898.bl3 317898.bl \( 2 \cdot 3^{3} \cdot 7 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 78055, -5184647]$ \(y^2+xy+y=x^3-x^2+78055x-5184647\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 87.8.0.?, 168.8.0.?, $\ldots$
320166.cp3 320166.cp \( 2 \cdot 3^{3} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $6.070130091$ $[1, -1, 0, 61143, 3565645]$ \(y^2+xy=x^3-x^2+61143x+3565645\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 168.8.0.?, 231.8.0.?, $\ldots$
320166.gu3 320166.gu \( 2 \cdot 3^{3} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.075370284$ $[1, -1, 1, 550285, -96822701]$ \(y^2+xy+y=x^3-x^2+550285x-96822701\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 168.8.0.?, 231.8.0.?, $\ldots$
363258.r3 363258.r \( 2 \cdot 3^{3} \cdot 7 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 89193, 6286877]$ \(y^2+xy=x^3-x^2+89193x+6286877\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 93.8.0.?, 168.8.0.?, $\ldots$
363258.bt3 363258.bt \( 2 \cdot 3^{3} \cdot 7 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 9910, -236151]$ \(y^2+xy+y=x^3-x^2+9910x-236151\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 93.8.0.?, 168.8.0.?, $\ldots$
365904.ee3 365904.ee \( 2^{4} \cdot 3^{3} \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 19965, 668162]$ \(y^2=x^3+19965x+668162\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 132.8.0.?, 168.8.0.?, $\ldots$
365904.ef3 365904.ef \( 2^{4} \cdot 3^{3} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.338082989$ $[0, 0, 0, 179685, -18040374]$ \(y^2=x^3+179685x-18040374\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 132.8.0.?, 168.8.0.?, $\ldots$
447174.by3 447174.by \( 2 \cdot 3^{3} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 85398, -5932172]$ \(y^2+xy=x^3-x^2+85398x-5932172\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 168.8.0.?, 273.8.0.?, $\ldots$
447174.fv3 447174.fv \( 2 \cdot 3^{3} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 768580, 159400063]$ \(y^2+xy+y=x^3-x^2+768580x+159400063\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 168.8.0.?, 273.8.0.?, $\ldots$
529200.oj3 529200.oj \( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1819125, -581127750]$ \(y^2=x^3+1819125x-581127750\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 120.8.0.?, 168.8.0.?, $\ldots$
529200.ov3 529200.ov \( 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.650537856$ $[0, 0, 0, 202125, 21523250]$ \(y^2=x^3+202125x+21523250\) 3.4.0.a.1, 9.12.0.a.1, 63.36.0.d.1, 120.8.0.?, 168.8.0.?, $\ldots$
2116800.bdr3 2116800.bdr \( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.230418978$ $[0, 0, 0, 7276500, -4649022000]$ \(y^2=x^3+7276500x-4649022000\) 3.4.0.a.1, 9.12.0.a.1, 30.8.0-3.a.1.1, 63.36.0.d.1, 90.24.0.?, $\ldots$
2116800.bdu3 2116800.bdu \( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.376011428$ $[0, 0, 0, 7276500, 4649022000]$ \(y^2=x^3+7276500x+4649022000\) 3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.4, 63.36.0.d.1, 168.8.0.?, $\ldots$
Next   displayed columns for results