Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
37.b3 |
37b3 |
37.b |
37b |
$3$ |
$9$ |
\( 37 \) |
\( 37 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.1 |
3B.1.1 |
$1998$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.876531$ |
$4096000/37$ |
$0.88268$ |
$4.21652$ |
$[0, 1, 1, -3, 1]$ |
\(y^2+y=x^3+x^2-3x+1\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[ ]$ |
333.b3 |
333a1 |
333.b |
333a |
$3$ |
$9$ |
\( 3^{2} \cdot 37 \) |
\( 3^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.2 |
3B.1.2 |
$1998$ |
$1296$ |
$43$ |
$0.724769861$ |
$1$ |
|
$4$ |
$20$ |
$-0.327225$ |
$4096000/37$ |
$0.88268$ |
$3.75631$ |
$[0, 0, 1, -30, -63]$ |
\(y^2+y=x^3-30x-63\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[(-3, 0)]$ |
592.a3 |
592e1 |
592.a |
592e |
$3$ |
$9$ |
\( 2^{4} \cdot 37 \) |
\( 2^{12} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3996$ |
$1296$ |
$43$ |
$1.025677162$ |
$1$ |
|
$2$ |
$48$ |
$-0.183383$ |
$4096000/37$ |
$0.88268$ |
$3.68814$ |
$[0, -1, 0, -53, -131]$ |
\(y^2=x^3-x^2-53x-131\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 27.36.0.a.1, 36.24.0-9.a.1.2, $\ldots$ |
$[(-4, 1)]$ |
925.b3 |
925b1 |
925.b |
925b |
$3$ |
$9$ |
\( 5^{2} \cdot 37 \) |
\( 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$0.316316859$ |
$1$ |
|
$6$ |
$96$ |
$-0.071812$ |
$4096000/37$ |
$0.88268$ |
$3.64318$ |
$[0, -1, 1, -83, 318]$ |
\(y^2+y=x^3-x^2-83x+318\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
$[(2, 12)]$ |
1369.c3 |
1369a1 |
1369.c |
1369a |
$3$ |
$9$ |
\( 37^{2} \) |
\( 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1998$ |
$1296$ |
$43$ |
$0.614182185$ |
$1$ |
|
$0$ |
$912$ |
$0.928928$ |
$4096000/37$ |
$0.88268$ |
$5.10826$ |
$[0, 1, 1, -4563, 116200]$ |
\(y^2+y=x^3+x^2-4563x+116200\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 27.36.0.a.1, $\ldots$ |
$[(85/2, 1365/2)]$ |
1813.b3 |
1813c1 |
1813.b |
1813c |
$3$ |
$9$ |
\( 7^{2} \cdot 37 \) |
\( 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1.579657105$ |
$1$ |
|
$2$ |
$252$ |
$0.096424$ |
$4096000/37$ |
$0.88268$ |
$3.58549$ |
$[0, -1, 1, -163, -743]$ |
\(y^2+y=x^3-x^2-163x-743\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 27.36.0.a.1, 63.24.0-9.a.1.1, $\ldots$ |
$[(-7, 2)]$ |
2368.d3 |
2368c1 |
2368.d |
2368c |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$0.557244083$ |
$1$ |
|
$2$ |
$96$ |
$-0.529957$ |
$4096000/37$ |
$0.88268$ |
$2.49484$ |
$[0, -1, 0, -13, 23]$ |
\(y^2=x^3-x^2-13x+23\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(2, 1)]$ |
2368.m3 |
2368j1 |
2368.m |
2368j |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$-0.529957$ |
$4096000/37$ |
$0.88268$ |
$2.49484$ |
$[0, 1, 0, -13, -23]$ |
\(y^2=x^3+x^2-13x-23\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
4477.a3 |
4477b1 |
4477.a |
4477b |
$3$ |
$9$ |
\( 11^{2} \cdot 37 \) |
\( 11^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21978$ |
$1296$ |
$43$ |
$3.430677224$ |
$1$ |
|
$0$ |
$900$ |
$0.322417$ |
$4096000/37$ |
$0.88268$ |
$3.52253$ |
$[0, 1, 1, -403, -3228]$ |
\(y^2+y=x^3+x^2-403x-3228\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-51/2, 1/2)]$ |
5328.k3 |
5328u1 |
5328.k |
5328u |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3996$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1440$ |
$0.365922$ |
$4096000/37$ |
$0.88268$ |
$3.51193$ |
$[0, 0, 0, -480, 4016]$ |
\(y^2=x^3-480x+4016\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 27.36.0.a.1, 36.24.0-9.a.1.1, $\ldots$ |
$[ ]$ |
6253.b3 |
6253a1 |
6253.b |
6253a |
$3$ |
$9$ |
\( 13^{2} \cdot 37 \) |
\( 13^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$25974$ |
$1296$ |
$43$ |
$1.053169496$ |
$1$ |
|
$4$ |
$1440$ |
$0.405944$ |
$4096000/37$ |
$0.88268$ |
$3.50256$ |
$[0, 1, 1, -563, 4918]$ |
\(y^2+y=x^3+x^2-563x+4918\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(-22, 84)]$ |
8325.p3 |
8325q1 |
8325.p |
8325q |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 37 \) |
\( 3^{6} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$0.477494$ |
$4096000/37$ |
$0.88268$ |
$3.48662$ |
$[0, 0, 1, -750, -7844]$ |
\(y^2+y=x^3-750x-7844\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
$[ ]$ |
10693.e3 |
10693a1 |
10693.e |
10693a |
$3$ |
$9$ |
\( 17^{2} \cdot 37 \) |
\( 17^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$33966$ |
$1296$ |
$43$ |
$0.773306114$ |
$1$ |
|
$4$ |
$3072$ |
$0.540076$ |
$4096000/37$ |
$0.88268$ |
$3.47349$ |
$[0, -1, 1, -963, 11739]$ |
\(y^2+y=x^3-x^2-963x+11739\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-11, 144)]$ |
12321.f3 |
12321c1 |
12321.f |
12321c |
$3$ |
$9$ |
\( 3^{2} \cdot 37^{2} \) |
\( 3^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1998$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$27360$ |
$1.478235$ |
$4096000/37$ |
$0.88268$ |
$4.61646$ |
$[0, 0, 1, -41070, -3178476]$ |
\(y^2+y=x^3-41070x-3178476\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 27.36.0.a.1, $\ldots$ |
$[ ]$ |
13357.b3 |
13357a1 |
13357.b |
13357a |
$3$ |
$9$ |
\( 19^{2} \cdot 37 \) |
\( 19^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37962$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$4752$ |
$0.595689$ |
$4096000/37$ |
$0.88268$ |
$3.46241$ |
$[0, -1, 1, -1203, -15540]$ |
\(y^2+y=x^3-x^2-1203x-15540\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
14800.ba3 |
14800l1 |
14800.ba |
14800l |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 37 \) |
\( 2^{12} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$19980$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$0.621335$ |
$4096000/37$ |
$0.88268$ |
$3.45747$ |
$[0, 1, 0, -1333, -19037]$ |
\(y^2=x^3+x^2-1333x-19037\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
16317.h3 |
16317g1 |
16317.h |
16317g |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 3^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$7560$ |
$0.645730$ |
$4096000/37$ |
$0.88268$ |
$3.45286$ |
$[0, 0, 1, -1470, 21523]$ |
\(y^2+y=x^3-1470x+21523\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 27.36.0.a.1, 63.24.0-9.a.1.2, $\ldots$ |
$[ ]$ |
19573.c3 |
19573a1 |
19573.c |
19573a |
$3$ |
$9$ |
\( 23^{2} \cdot 37 \) |
\( 23^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45954$ |
$1296$ |
$43$ |
$4.835698432$ |
$1$ |
|
$4$ |
$7920$ |
$0.691216$ |
$4096000/37$ |
$0.88268$ |
$3.44453$ |
$[0, 1, 1, -1763, -28865]$ |
\(y^2+y=x^3+x^2-1763x-28865\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 69.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-233/3, 251/3), (-25, 14)]$ |
21312.bh3 |
21312k1 |
21312.bh |
21312k |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 37 \) |
\( 2^{6} \cdot 3^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$0.019349$ |
$4096000/37$ |
$0.88268$ |
$2.60620$ |
$[0, 0, 0, -120, -502]$ |
\(y^2=x^3-120x-502\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
21312.bn3 |
21312bq1 |
21312.bn |
21312bq |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 37 \) |
\( 2^{6} \cdot 3^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1.990400289$ |
$1$ |
|
$2$ |
$2880$ |
$0.019349$ |
$4096000/37$ |
$0.88268$ |
$2.60620$ |
$[0, 0, 0, -120, 502]$ |
\(y^2=x^3-120x+502\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(3, 13)]$ |
21904.d3 |
21904h1 |
21904.d |
21904h |
$3$ |
$9$ |
\( 2^{4} \cdot 37^{2} \) |
\( 2^{12} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3996$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$65664$ |
$1.622076$ |
$4096000/37$ |
$0.88268$ |
$4.52340$ |
$[0, -1, 0, -73013, -7509827]$ |
\(y^2=x^3-x^2-73013x-7509827\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 27.36.0.a.1, 36.24.0-9.a.1.4, $\ldots$ |
$[ ]$ |
29008.l3 |
29008l1 |
29008.l |
29008l |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$27972$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$18144$ |
$0.789572$ |
$4096000/37$ |
$0.88268$ |
$3.42751$ |
$[0, 1, 0, -2613, 50147]$ |
\(y^2=x^3+x^2-2613x+50147\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 84.8.0.?, $\ldots$ |
$[ ]$ |
31117.d3 |
31117a1 |
31117.d |
31117a |
$3$ |
$9$ |
\( 29^{2} \cdot 37 \) |
\( 29^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$57942$ |
$1296$ |
$43$ |
$0.770955218$ |
$1$ |
|
$4$ |
$16128$ |
$0.807117$ |
$4096000/37$ |
$0.88268$ |
$3.42461$ |
$[0, -1, 1, -2803, 57616]$ |
\(y^2+y=x^3-x^2-2803x+57616\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 87.8.0.?, $\ldots$ |
$[(68, 420)]$ |
34225.e3 |
34225b1 |
34225.e |
34225b |
$3$ |
$9$ |
\( 5^{2} \cdot 37^{2} \) |
\( 5^{6} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$1.980506256$ |
$1$ |
|
$0$ |
$131328$ |
$1.733646$ |
$4096000/37$ |
$0.88268$ |
$4.45828$ |
$[0, -1, 1, -114083, 14753193]$ |
\(y^2+y=x^3-x^2-114083x+14753193\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(1483/3, 17099/3)]$ |
35557.c3 |
35557a1 |
35557.c |
35557a |
$3$ |
$9$ |
\( 31^{2} \cdot 37 \) |
\( 31^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$61938$ |
$1296$ |
$43$ |
$4.606494504$ |
$1$ |
|
$4$ |
$20160$ |
$0.840463$ |
$4096000/37$ |
$0.88268$ |
$3.41920$ |
$[0, -1, 1, -3203, -68169]$ |
\(y^2+y=x^3-x^2-3203x-68169\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 93.8.0.?, $\ldots$ |
$[(83, 480), (-1699/7, 309/7)]$ |
40293.h3 |
40293j1 |
40293.h |
40293j |
$3$ |
$9$ |
\( 3^{2} \cdot 11^{2} \cdot 37 \) |
\( 3^{6} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21978$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$27000$ |
$0.871723$ |
$4096000/37$ |
$0.88268$ |
$3.41426$ |
$[0, 0, 1, -3630, 83520]$ |
\(y^2+y=x^3-3630x+83520\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
45325.k3 |
45325c1 |
45325.k |
45325c |
$3$ |
$9$ |
\( 5^{2} \cdot 7^{2} \cdot 37 \) |
\( 5^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69930$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$36288$ |
$0.901143$ |
$4096000/37$ |
$0.88268$ |
$3.40971$ |
$[0, 1, 1, -4083, -101006]$ |
\(y^2+y=x^3+x^2-4083x-101006\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 105.8.0.?, $\ldots$ |
$[ ]$ |
56277.j3 |
56277c1 |
56277.j |
56277c |
$3$ |
$9$ |
\( 3^{2} \cdot 13^{2} \cdot 37 \) |
\( 3^{6} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$25974$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$43200$ |
$0.955250$ |
$4096000/37$ |
$0.88268$ |
$3.40160$ |
$[0, 0, 1, -5070, -137862]$ |
\(y^2+y=x^3-5070x-137862\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
59200.bl3 |
59200cv1 |
59200.bl |
59200cv |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( 2^{6} \cdot 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$39960$ |
$1296$ |
$43$ |
$1.862196118$ |
$1$ |
|
$2$ |
$13824$ |
$0.274762$ |
$4096000/37$ |
$0.88268$ |
$2.64281$ |
$[0, -1, 0, -333, -2213]$ |
\(y^2=x^3-x^2-333x-2213\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 120.8.0.?, $\ldots$ |
$[(22, 25)]$ |
59200.cp3 |
59200x1 |
59200.cp |
59200x |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( 2^{6} \cdot 5^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$39960$ |
$1296$ |
$43$ |
$2.741575822$ |
$1$ |
|
$4$ |
$13824$ |
$0.274762$ |
$4096000/37$ |
$0.88268$ |
$2.64281$ |
$[0, 1, 0, -333, 2213]$ |
\(y^2=x^3+x^2-333x+2213\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 120.8.0.?, $\ldots$ |
$[(28, 125), (37/2, 25/2)]$ |
62197.c3 |
62197c1 |
62197.c |
62197c |
$3$ |
$9$ |
\( 37 \cdot 41^{2} \) |
\( 37 \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$81918$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$44880$ |
$0.980255$ |
$4096000/37$ |
$0.88268$ |
$3.39797$ |
$[0, -1, 1, -5603, 162045]$ |
\(y^2+y=x^3-x^2-5603x+162045\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 123.8.0.?, $\ldots$ |
$[ ]$ |
67081.g3 |
67081a1 |
67081.g |
67081a |
$3$ |
$9$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$344736$ |
$1.901884$ |
$4096000/37$ |
$0.88268$ |
$4.36998$ |
$[0, -1, 1, -223603, -40303880]$ |
\(y^2+y=x^3-x^2-223603x-40303880\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 42.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
68413.a3 |
68413a1 |
68413.a |
68413a |
$3$ |
$9$ |
\( 37 \cdot 43^{2} \) |
\( 37 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$85914$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$52416$ |
$1.004070$ |
$4096000/37$ |
$0.88268$ |
$3.39456$ |
$[0, -1, 1, -6163, -182726]$ |
\(y^2+y=x^3-x^2-6163x-182726\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 129.8.0.?, $\ldots$ |
$[ ]$ |
71632.f3 |
71632p1 |
71632.f |
71632p |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 37 \) |
\( 2^{12} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$43956$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$64800$ |
$1.015564$ |
$4096000/37$ |
$0.88268$ |
$3.39294$ |
$[0, -1, 0, -6453, 200125]$ |
\(y^2=x^3-x^2-6453x+200125\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 132.8.0.?, $\ldots$ |
$[ ]$ |
81733.c3 |
81733c1 |
81733.c |
81733c |
$3$ |
$9$ |
\( 37 \cdot 47^{2} \) |
\( 37 \cdot 47^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$93906$ |
$1296$ |
$43$ |
$10.21475293$ |
$1$ |
|
$0$ |
$70380$ |
$1.048544$ |
$4096000/37$ |
$0.88268$ |
$3.38836$ |
$[0, 1, 1, -7363, -243747]$ |
\(y^2+y=x^3+x^2-7363x-243747\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 141.8.0.?, $\ldots$ |
$[(-40761/29, 967483/29)]$ |
87616.p3 |
87616j1 |
87616.p |
87616j |
$3$ |
$9$ |
\( 2^{6} \cdot 37^{2} \) |
\( 2^{6} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1.619109114$ |
$1$ |
|
$2$ |
$131328$ |
$1.275501$ |
$4096000/37$ |
$0.88268$ |
$3.60697$ |
$[0, -1, 0, -18253, 947855]$ |
\(y^2=x^3-x^2-18253x+947855\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(-86, 1369)]$ |
87616.bj3 |
87616bb1 |
87616.bj |
87616bb |
$3$ |
$9$ |
\( 2^{6} \cdot 37^{2} \) |
\( 2^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$131328$ |
$1.275501$ |
$4096000/37$ |
$0.88268$ |
$3.60697$ |
$[0, 1, 0, -18253, -947855]$ |
\(y^2=x^3+x^2-18253x-947855\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
96237.g3 |
96237e1 |
96237.g |
96237e |
$3$ |
$9$ |
\( 3^{2} \cdot 17^{2} \cdot 37 \) |
\( 3^{6} \cdot 17^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$33966$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$92160$ |
$1.089382$ |
$4096000/37$ |
$0.88268$ |
$3.38283$ |
$[0, 0, 1, -8670, -308291]$ |
\(y^2+y=x^3-8670x-308291\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
100048.b3 |
100048i1 |
100048.b |
100048i |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 37 \) |
\( 2^{12} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$51948$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$1.099091$ |
$4096000/37$ |
$0.88268$ |
$3.38154$ |
$[0, -1, 0, -9013, -323779]$ |
\(y^2=x^3-x^2-9013x-323779\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 156.8.0.?, $\ldots$ |
$[ ]$ |
103933.b3 |
103933b1 |
103933.b |
103933b |
$3$ |
$9$ |
\( 37 \cdot 53^{2} \) |
\( 37 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$105894$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$100776$ |
$1.108616$ |
$4096000/37$ |
$0.88268$ |
$3.38028$ |
$[0, -1, 1, -9363, 349122]$ |
\(y^2+y=x^3-x^2-9363x+349122\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 159.8.0.?, $\ldots$ |
$[ ]$ |
111925.o3 |
111925d1 |
111925.o |
111925d |
$3$ |
$9$ |
\( 5^{2} \cdot 11^{2} \cdot 37 \) |
\( 5^{6} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$109890$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$129600$ |
$1.127136$ |
$4096000/37$ |
$0.88268$ |
$3.37785$ |
$[0, -1, 1, -10083, -383307]$ |
\(y^2+y=x^3-x^2-10083x-383307\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 165.8.0.?, $\ldots$ |
$[ ]$ |
116032.q3 |
116032bb1 |
116032.q |
116032bb |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 37 \) |
\( 2^{6} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$55944$ |
$1296$ |
$43$ |
$2.263172058$ |
$1$ |
|
$2$ |
$36288$ |
$0.442998$ |
$4096000/37$ |
$0.88268$ |
$2.66343$ |
$[0, -1, 0, -653, 6595]$ |
\(y^2=x^3-x^2-653x+6595\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 168.8.0.?, $\ldots$ |
$[(14, 1)]$ |
116032.bk3 |
116032a1 |
116032.bk |
116032a |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 37 \) |
\( 2^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$55944$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$36288$ |
$0.442998$ |
$4096000/37$ |
$0.88268$ |
$2.66343$ |
$[0, 1, 0, -653, -6595]$ |
\(y^2=x^3+x^2-653x-6595\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 168.8.0.?, $\ldots$ |
$[ ]$ |
120213.f3 |
120213h1 |
120213.f |
120213h |
$3$ |
$9$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37962$ |
$1296$ |
$43$ |
$2.069340773$ |
$1$ |
|
$2$ |
$142560$ |
$1.144995$ |
$4096000/37$ |
$0.88268$ |
$3.37555$ |
$[0, 0, 1, -10830, 430402]$ |
\(y^2+y=x^3-10830x+430402\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-76, 902)]$ |
128797.a3 |
128797a1 |
128797.a |
128797a |
$3$ |
$9$ |
\( 37 \cdot 59^{2} \) |
\( 37 \cdot 59^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$117882$ |
$1296$ |
$43$ |
$12.68755109$ |
$1$ |
|
$2$ |
$133632$ |
$1.162237$ |
$4096000/37$ |
$0.88268$ |
$3.37334$ |
$[0, 1, 1, -11603, -481184]$ |
\(y^2+y=x^3+x^2-11603x-481184\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 177.8.0.?, $\ldots$ |
$[(1354/3, 29575/3), (-58, 6)]$ |
133200.cw3 |
133200ck1 |
133200.cw |
133200ck |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$19980$ |
$1296$ |
$43$ |
$5.012178031$ |
$1$ |
|
$0$ |
$207360$ |
$1.170641$ |
$4096000/37$ |
$0.88268$ |
$3.37228$ |
$[0, 0, 0, -12000, 502000]$ |
\(y^2=x^3-12000x+502000\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(-495/2, 2425/2)]$ |
137677.b3 |
137677b1 |
137677.b |
137677b |
$3$ |
$9$ |
\( 37 \cdot 61^{2} \) |
\( 37 \cdot 61^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$121878$ |
$1296$ |
$43$ |
$2.331605541$ |
$1$ |
|
$0$ |
$151200$ |
$1.178905$ |
$4096000/37$ |
$0.88268$ |
$3.37124$ |
$[0, 1, 1, -12403, 523386]$ |
\(y^2+y=x^3+x^2-12403x+523386\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 183.8.0.?, $\ldots$ |
$[(790/3, 9289/3)]$ |
156325.i3 |
156325i1 |
156325.i |
156325i |
$3$ |
$9$ |
\( 5^{2} \cdot 13^{2} \cdot 37 \) |
\( 5^{6} \cdot 13^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$129870$ |
$1296$ |
$43$ |
$2.145381233$ |
$1$ |
|
$8$ |
$207360$ |
$1.210663$ |
$4096000/37$ |
$0.88268$ |
$3.36730$ |
$[0, -1, 1, -14083, 642943]$ |
\(y^2+y=x^3-x^2-14083x+642943\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 195.8.0.?, $\ldots$ |
$[(61, 84), (413/2, 4221/2)]$ |
165649.i3 |
165649i1 |
165649.i |
165649i |
$3$ |
$9$ |
\( 11^{2} \cdot 37^{2} \) |
\( 11^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21978$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1231200$ |
$2.127876$ |
$4096000/37$ |
$0.88268$ |
$4.26693$ |
$[0, 1, 1, -552163, -156871137]$ |
\(y^2+y=x^3+x^2-552163x-156871137\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 66.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
166093.b3 |
166093b1 |
166093.b |
166093b |
$3$ |
$9$ |
\( 37 \cdot 67^{2} \) |
\( 37 \cdot 67^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$133866$ |
$1296$ |
$43$ |
$2.883471546$ |
$1$ |
|
$0$ |
$202752$ |
$1.225815$ |
$4096000/37$ |
$0.88268$ |
$3.36545$ |
$[0, -1, 1, -14963, -694008]$ |
\(y^2+y=x^3-x^2-14963x-694008\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 201.8.0.?, $\ldots$ |
$[(917/2, 22441/2)]$ |