Learn more

Refine search


Results (1-50 of 84 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
37.b3 37.b \( 37 \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, -3, 1]$ \(y^2+y=x^3+x^2-3x+1\) 3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 74.2.0.?, 222.16.0.?, $\ldots$ $[ ]$
333.b3 333.b \( 3^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.724769861$ $[0, 0, 1, -30, -63]$ \(y^2+y=x^3-30x-63\) 3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 74.2.0.?, 222.16.0.?, $\ldots$ $[(-3, 0)]$
592.a3 592.a \( 2^{4} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.025677162$ $[0, -1, 0, -53, -131]$ \(y^2=x^3-x^2-53x-131\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 27.36.0.a.1, 36.24.0-9.a.1.2, $\ldots$ $[(-4, 1)]$
925.b3 925.b \( 5^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.316316859$ $[0, -1, 1, -83, 318]$ \(y^2+y=x^3-x^2-83x+318\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ $[(2, 12)]$
1369.c3 1369.c \( 37^{2} \) $1$ $\mathsf{trivial}$ $0.614182185$ $[0, 1, 1, -4563, 116200]$ \(y^2+y=x^3+x^2-4563x+116200\) 3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 27.36.0.a.1, $\ldots$ $[(85/2, 1365/2)]$
1813.b3 1813.b \( 7^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.579657105$ $[0, -1, 1, -163, -743]$ \(y^2+y=x^3-x^2-163x-743\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 27.36.0.a.1, 63.24.0-9.a.1.1, $\ldots$ $[(-7, 2)]$
2368.d3 2368.d \( 2^{6} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.557244083$ $[0, -1, 0, -13, 23]$ \(y^2=x^3-x^2-13x+23\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 27.36.0.a.1, 72.24.0.?, $\ldots$ $[(2, 1)]$
2368.m3 2368.m \( 2^{6} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -13, -23]$ \(y^2=x^3+x^2-13x-23\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 27.36.0.a.1, 72.24.0.?, $\ldots$ $[ ]$
4477.a3 4477.a \( 11^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $3.430677224$ $[0, 1, 1, -403, -3228]$ \(y^2+y=x^3+x^2-403x-3228\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[(-51/2, 1/2)]$
5328.k3 5328.k \( 2^{4} \cdot 3^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -480, 4016]$ \(y^2=x^3-480x+4016\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 27.36.0.a.1, 36.24.0-9.a.1.1, $\ldots$ $[ ]$
6253.b3 6253.b \( 13^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.053169496$ $[0, 1, 1, -563, 4918]$ \(y^2+y=x^3+x^2-563x+4918\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[(-22, 84)]$
8325.p3 8325.p \( 3^{2} \cdot 5^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -750, -7844]$ \(y^2+y=x^3-750x-7844\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ $[ ]$
10693.e3 10693.e \( 17^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.773306114$ $[0, -1, 1, -963, 11739]$ \(y^2+y=x^3-x^2-963x+11739\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[(-11, 144)]$
12321.f3 12321.f \( 3^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -41070, -3178476]$ \(y^2+y=x^3-41070x-3178476\) 3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 27.36.0.a.1, $\ldots$ $[ ]$
13357.b3 13357.b \( 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1203, -15540]$ \(y^2+y=x^3-x^2-1203x-15540\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[ ]$
14800.ba3 14800.ba \( 2^{4} \cdot 5^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1333, -19037]$ \(y^2=x^3+x^2-1333x-19037\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[ ]$
16317.h3 16317.h \( 3^{2} \cdot 7^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -1470, 21523]$ \(y^2+y=x^3-1470x+21523\) 3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 27.36.0.a.1, 63.24.0-9.a.1.2, $\ldots$ $[ ]$
19573.c3 19573.c \( 23^{2} \cdot 37 \) $2$ $\mathsf{trivial}$ $4.835698432$ $[0, 1, 1, -1763, -28865]$ \(y^2+y=x^3+x^2-1763x-28865\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 69.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[(-233/3, 251/3), (-25, 14)]$
21312.bh3 21312.bh \( 2^{6} \cdot 3^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -120, -502]$ \(y^2=x^3-120x-502\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 27.36.0.a.1, 72.24.0.?, $\ldots$ $[ ]$
21312.bn3 21312.bn \( 2^{6} \cdot 3^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.990400289$ $[0, 0, 0, -120, 502]$ \(y^2=x^3-120x+502\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 27.36.0.a.1, 72.24.0.?, $\ldots$ $[(3, 13)]$
21904.d3 21904.d \( 2^{4} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -73013, -7509827]$ \(y^2=x^3-x^2-73013x-7509827\) 3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.3, 27.36.0.a.1, 36.24.0-9.a.1.4, $\ldots$ $[ ]$
29008.l3 29008.l \( 2^{4} \cdot 7^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -2613, 50147]$ \(y^2=x^3+x^2-2613x+50147\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 84.8.0.?, $\ldots$ $[ ]$
31117.d3 31117.d \( 29^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $0.770955218$ $[0, -1, 1, -2803, 57616]$ \(y^2+y=x^3-x^2-2803x+57616\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 87.8.0.?, $\ldots$ $[(68, 420)]$
34225.e3 34225.e \( 5^{2} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $1.980506256$ $[0, -1, 1, -114083, 14753193]$ \(y^2+y=x^3-x^2-114083x+14753193\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[(1483/3, 17099/3)]$
35557.c3 35557.c \( 31^{2} \cdot 37 \) $2$ $\mathsf{trivial}$ $4.606494504$ $[0, -1, 1, -3203, -68169]$ \(y^2+y=x^3-x^2-3203x-68169\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 93.8.0.?, $\ldots$ $[(83, 480), (-1699/7, 309/7)]$
40293.h3 40293.h \( 3^{2} \cdot 11^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -3630, 83520]$ \(y^2+y=x^3-3630x+83520\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[ ]$
45325.k3 45325.k \( 5^{2} \cdot 7^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -4083, -101006]$ \(y^2+y=x^3+x^2-4083x-101006\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 105.8.0.?, $\ldots$ $[ ]$
56277.j3 56277.j \( 3^{2} \cdot 13^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -5070, -137862]$ \(y^2+y=x^3-5070x-137862\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[ ]$
59200.bl3 59200.bl \( 2^{6} \cdot 5^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $1.862196118$ $[0, -1, 0, -333, -2213]$ \(y^2=x^3-x^2-333x-2213\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 120.8.0.?, $\ldots$ $[(22, 25)]$
59200.cp3 59200.cp \( 2^{6} \cdot 5^{2} \cdot 37 \) $2$ $\mathsf{trivial}$ $2.741575822$ $[0, 1, 0, -333, 2213]$ \(y^2=x^3+x^2-333x+2213\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 120.8.0.?, $\ldots$ $[(28, 125), (37/2, 25/2)]$
62197.c3 62197.c \( 37 \cdot 41^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -5603, 162045]$ \(y^2+y=x^3-x^2-5603x+162045\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 123.8.0.?, $\ldots$ $[ ]$
67081.g3 67081.g \( 7^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -223603, -40303880]$ \(y^2+y=x^3-x^2-223603x-40303880\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 42.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[ ]$
68413.a3 68413.a \( 37 \cdot 43^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -6163, -182726]$ \(y^2+y=x^3-x^2-6163x-182726\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 129.8.0.?, $\ldots$ $[ ]$
71632.f3 71632.f \( 2^{4} \cdot 11^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -6453, 200125]$ \(y^2=x^3-x^2-6453x+200125\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 132.8.0.?, $\ldots$ $[ ]$
81733.c3 81733.c \( 37 \cdot 47^{2} \) $1$ $\mathsf{trivial}$ $10.21475293$ $[0, 1, 1, -7363, -243747]$ \(y^2+y=x^3+x^2-7363x-243747\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 141.8.0.?, $\ldots$ $[(-40761/29, 967483/29)]$
87616.p3 87616.p \( 2^{6} \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $1.619109114$ $[0, -1, 0, -18253, 947855]$ \(y^2=x^3-x^2-18253x+947855\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 27.36.0.a.1, 72.24.0.?, $\ldots$ $[(-86, 1369)]$
87616.bj3 87616.bj \( 2^{6} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -18253, -947855]$ \(y^2=x^3+x^2-18253x-947855\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 27.36.0.a.1, 72.24.0.?, $\ldots$ $[ ]$
96237.g3 96237.g \( 3^{2} \cdot 17^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -8670, -308291]$ \(y^2+y=x^3-8670x-308291\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[ ]$
100048.b3 100048.b \( 2^{4} \cdot 13^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -9013, -323779]$ \(y^2=x^3-x^2-9013x-323779\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 156.8.0.?, $\ldots$ $[ ]$
103933.b3 103933.b \( 37 \cdot 53^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -9363, 349122]$ \(y^2+y=x^3-x^2-9363x+349122\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 159.8.0.?, $\ldots$ $[ ]$
111925.o3 111925.o \( 5^{2} \cdot 11^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -10083, -383307]$ \(y^2+y=x^3-x^2-10083x-383307\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 165.8.0.?, $\ldots$ $[ ]$
116032.q3 116032.q \( 2^{6} \cdot 7^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $2.263172058$ $[0, -1, 0, -653, 6595]$ \(y^2=x^3-x^2-653x+6595\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 168.8.0.?, $\ldots$ $[(14, 1)]$
116032.bk3 116032.bk \( 2^{6} \cdot 7^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -653, -6595]$ \(y^2=x^3+x^2-653x-6595\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 168.8.0.?, $\ldots$ $[ ]$
120213.f3 120213.f \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $2.069340773$ $[0, 0, 1, -10830, 430402]$ \(y^2+y=x^3-10830x+430402\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[(-76, 902)]$
128797.a3 128797.a \( 37 \cdot 59^{2} \) $2$ $\mathsf{trivial}$ $12.68755109$ $[0, 1, 1, -11603, -481184]$ \(y^2+y=x^3+x^2-11603x-481184\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 177.8.0.?, $\ldots$ $[(1354/3, 29575/3), (-58, 6)]$
133200.cw3 133200.cw \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $5.012178031$ $[0, 0, 0, -12000, 502000]$ \(y^2=x^3-12000x+502000\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[(-495/2, 2425/2)]$
137677.b3 137677.b \( 37 \cdot 61^{2} \) $1$ $\mathsf{trivial}$ $2.331605541$ $[0, 1, 1, -12403, 523386]$ \(y^2+y=x^3+x^2-12403x+523386\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 183.8.0.?, $\ldots$ $[(790/3, 9289/3)]$
156325.i3 156325.i \( 5^{2} \cdot 13^{2} \cdot 37 \) $2$ $\mathsf{trivial}$ $2.145381233$ $[0, -1, 1, -14083, 642943]$ \(y^2+y=x^3-x^2-14083x+642943\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 195.8.0.?, $\ldots$ $[(61, 84), (413/2, 4221/2)]$
165649.i3 165649.i \( 11^{2} \cdot 37^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -552163, -156871137]$ \(y^2+y=x^3+x^2-552163x-156871137\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 66.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[ ]$
166093.b3 166093.b \( 37 \cdot 67^{2} \) $1$ $\mathsf{trivial}$ $2.883471546$ $[0, -1, 1, -14963, -694008]$ \(y^2+y=x^3-x^2-14963x-694008\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 201.8.0.?, $\ldots$ $[(917/2, 22441/2)]$
Next   displayed columns for results