Learn more

Refine search


Results (1-50 of 84 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
57.c3 57.c \( 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2, -1]$ \(y^2+xy+y=x^3-2x-1\)
171.a3 171.a \( 3^{2} \cdot 19 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -14, 20]$ \(y^2+xy+y=x^3-x^2-14x+20\)
912.b3 912.b \( 2^{4} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $0.650473478$ $[0, -1, 0, -24, 48]$ \(y^2=x^3-x^2-24x+48\)
1083.a3 1083.a \( 3 \cdot 19^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -549, 4050]$ \(y^2+xy+y=x^3+x^2-549x+4050\)
1425.a3 1425.a \( 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.563685169$ $[1, 1, 1, -38, -94]$ \(y^2+xy+y=x^3+x^2-38x-94\)
2736.s3 2736.s \( 2^{4} \cdot 3^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -219, -1078]$ \(y^2=x^3-219x-1078\)
2793.i3 2793.i \( 3 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.637562893$ $[1, 1, 0, -74, 183]$ \(y^2+xy=x^3+x^2-74x+183\)
3249.g3 3249.g \( 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.892773922$ $[1, -1, 0, -4941, -114296]$ \(y^2+xy=x^3-x^2-4941x-114296\)
3648.o3 3648.o \( 2^{6} \cdot 3 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -97, -287]$ \(y^2=x^3-x^2-97x-287\)
3648.bf3 3648.bf \( 2^{6} \cdot 3 \cdot 19 \) $1$ $\Z/2\Z$ $2.106375061$ $[0, 1, 0, -97, 287]$ \(y^2=x^3+x^2-97x+287\)
4275.m3 4275.m \( 3^{2} \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -342, 2191]$ \(y^2+xy=x^3-x^2-342x+2191\)
6897.a3 6897.a \( 3 \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -184, 815]$ \(y^2+xy=x^3-184x+815\)
8379.e3 8379.e \( 3^{2} \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z$ $1.841944016$ $[1, -1, 1, -671, -5610]$ \(y^2+xy+y=x^3-x^2-671x-5610\)
9633.h3 9633.h \( 3 \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $6.373717801$ $[1, 0, 0, -257, -1392]$ \(y^2+xy=x^3-257x-1392\)
10944.n3 10944.n \( 2^{6} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.053945323$ $[0, 0, 0, -876, -8624]$ \(y^2=x^3-876x-8624\)
10944.o3 10944.o \( 2^{6} \cdot 3^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.522163807$ $[0, 0, 0, -876, 8624]$ \(y^2=x^3-876x+8624\)
16473.e3 16473.e \( 3 \cdot 17^{2} \cdot 19 \) $1$ $\Z/2\Z$ $11.07909392$ $[1, 1, 0, -439, -3248]$ \(y^2+xy=x^3+x^2-439x-3248\)
17328.u3 17328.u \( 2^{4} \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -8784, -276780]$ \(y^2=x^3+x^2-8784x-276780\)
20691.p3 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1656, -22005]$ \(y^2+xy=x^3-x^2-1656x-22005\)
22800.cw3 22800.cw \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -608, 4788]$ \(y^2=x^3+x^2-608x+4788\)
27075.s3 27075.s \( 3 \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $6.768428821$ $[1, 0, 1, -13726, 533723]$ \(y^2+xy+y=x^3-13726x+533723\)
28899.m3 28899.m \( 3^{2} \cdot 13^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.671404701$ $[1, -1, 0, -2313, 37584]$ \(y^2+xy=x^3-x^2-2313x+37584\)
30153.g3 30153.g \( 3 \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -805, 7523]$ \(y^2+xy+y=x^3-805x+7523\)
44688.di3 44688.di \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1192, -14092]$ \(y^2=x^3+x^2-1192x-14092\)
47937.b3 47937.b \( 3 \cdot 19 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1279, -15748]$ \(y^2+xy+y=x^3+x^2-1279x-15748\)
49419.d3 49419.d \( 3^{2} \cdot 17^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -3956, 83742]$ \(y^2+xy+y=x^3-x^2-3956x+83742\)
51984.ci3 51984.ci \( 2^{4} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -79059, 7394002]$ \(y^2=x^3-79059x+7394002\)
53067.j3 53067.j \( 3 \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -26902, -1469917]$ \(y^2+xy=x^3-26902x-1469917\)
54777.c3 54777.c \( 3 \cdot 19 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1461, 17976]$ \(y^2+xy=x^3+x^2-1461x+17976\)
68400.dj3 68400.dj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $2$ $\Z/2\Z$ $2.301853412$ $[0, 0, 0, -5475, -134750]$ \(y^2=x^3-5475x-134750\)
69312.bp3 69312.bp \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $4.552180692$ $[0, -1, 0, -35137, -2179103]$ \(y^2=x^3-x^2-35137x-2179103\)
69312.dn3 69312.dn \( 2^{6} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $10.14244895$ $[0, 1, 0, -35137, 2179103]$ \(y^2=x^3+x^2-35137x+2179103\)
69825.q3 69825.q \( 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1863, 26592]$ \(y^2+xy=x^3-1863x+26592\)
78033.a3 78033.a \( 3 \cdot 19 \cdot 37^{2} \) $1$ $\Z/2\Z$ $15.02083448$ $[1, 0, 0, -2082, -31773]$ \(y^2+xy=x^3-2082x-31773\)
81225.k3 81225.k \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.910215338$ $[1, -1, 1, -123530, -14410528]$ \(y^2+xy+y=x^3-x^2-123530x-14410528\)
90459.f3 90459.f \( 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -7241, -203128]$ \(y^2+xy+y=x^3-x^2-7241x-203128\)
91200.cp3 91200.cp \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2433, 40737]$ \(y^2=x^3-x^2-2433x+40737\)
91200.ha3 91200.ha \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) $1$ $\Z/2\Z$ $7.024819109$ $[0, 1, 0, -2433, -40737]$ \(y^2=x^3+x^2-2433x-40737\)
95817.i3 95817.i \( 3 \cdot 19 \cdot 41^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2556, -44061]$ \(y^2+xy=x^3+x^2-2556x-44061\)
105393.d3 105393.d \( 3 \cdot 19 \cdot 43^{2} \) $1$ $\Z/2\Z$ $4.908045001$ $[1, 1, 1, -2812, 48428]$ \(y^2+xy+y=x^3+x^2-2812x+48428\)
110352.j3 110352.j \( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $2.312229312$ $[0, -1, 0, -2944, -52160]$ \(y^2=x^3-x^2-2944x-52160\)
125913.h3 125913.h \( 3 \cdot 19 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3360, 64489]$ \(y^2+xy+y=x^3-3360x+64489\)
131043.w3 131043.w \( 3 \cdot 11^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $22.51976855$ $[1, 1, 0, -66431, -5722944]$ \(y^2+xy=x^3+x^2-66431x-5722944\)
134064.bm3 134064.bm \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $2$ $\Z/2\Z$ $0.986135661$ $[0, 0, 0, -10731, 369754]$ \(y^2=x^3-10731x+369754\)
143811.p3 143811.p \( 3^{2} \cdot 19 \cdot 29^{2} \) $1$ $\Z/2\Z$ $7.722932003$ $[1, -1, 0, -11511, 413680]$ \(y^2+xy=x^3-x^2-11511x+413680\)
154128.bk3 154128.bk \( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4112, 89088]$ \(y^2=x^3-x^2-4112x+89088\)
159201.bi3 159201.bi \( 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -242118, 39687759]$ \(y^2+xy=x^3-x^2-242118x+39687759\)
160113.d3 160113.d \( 3 \cdot 19 \cdot 53^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -4272, -94656]$ \(y^2+xy+y=x^3+x^2-4272x-94656\)
164331.a3 164331.a \( 3^{2} \cdot 19 \cdot 31^{2} \) $1$ $\Z/2\Z$ $9.002935172$ $[1, -1, 1, -13154, -498504]$ \(y^2+xy+y=x^3-x^2-13154x-498504\)
172425.ca3 172425.ca \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $8.438248739$ $[1, 1, 0, -4600, 101875]$ \(y^2+xy=x^3+x^2-4600x+101875\)
Next   Download to