| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 4650.q2 |
4650v2 |
4650.q |
4650v |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{8} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$1.317236$ |
$36450495095/137276928$ |
$0.95530$ |
$4.60659$ |
$[1, 0, 1, 5049, -323702]$ |
\(y^2+xy+y=x^3+5049x-323702\) |
3.8.0-3.a.1.1, 248.2.0.?, 744.16.0.? |
$[ ]$ |
| 4650.bf2 |
4650ba2 |
4650.bf |
4650ba |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$0.125744242$ |
$1$ |
|
$8$ |
$2592$ |
$0.512517$ |
$36450495095/137276928$ |
$0.95530$ |
$3.46306$ |
$[1, 1, 1, 202, -2509]$ |
\(y^2+xy+y=x^3+x^2+202x-2509\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 248.2.0.?, 744.8.0.?, 3720.16.0.? |
$[(81, 703)]$ |
| 13950.x2 |
13950u2 |
13950.x |
13950u |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{8} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$0.466140320$ |
$1$ |
|
$6$ |
$20736$ |
$1.061823$ |
$36450495095/137276928$ |
$0.95530$ |
$3.75512$ |
$[1, -1, 0, 1818, 69556]$ |
\(y^2+xy=x^3-x^2+1818x+69556\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 248.2.0.?, 744.8.0.?, 3720.16.0.? |
$[(35, 401)]$ |
| 13950.ca2 |
13950cx2 |
13950.ca |
13950cx |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{8} \cdot 5^{8} \cdot 31^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$744$ |
$16$ |
$0$ |
$0.750361287$ |
$1$ |
|
$12$ |
$103680$ |
$1.866541$ |
$36450495095/137276928$ |
$0.95530$ |
$4.76700$ |
$[1, -1, 1, 45445, 8739947]$ |
\(y^2+xy+y=x^3-x^2+45445x+8739947\) |
3.8.0-3.a.1.2, 248.2.0.?, 744.16.0.? |
$[(219, 5290)]$ |
| 37200.bf2 |
37200cc2 |
37200.bf |
37200cc |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{8} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$5.592726283$ |
$1$ |
|
$2$ |
$311040$ |
$2.010384$ |
$36450495095/137276928$ |
$0.95530$ |
$4.48673$ |
$[0, -1, 0, 80792, 20716912]$ |
\(y^2=x^3-x^2+80792x+20716912\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 248.2.0.?, 744.16.0.? |
$[(73, 5196)]$ |
| 37200.cr2 |
37200cs2 |
37200.cr |
37200cs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1.526590482$ |
$1$ |
|
$2$ |
$62208$ |
$1.205664$ |
$36450495095/137276928$ |
$0.95530$ |
$3.56916$ |
$[0, 1, 0, 3232, 167028]$ |
\(y^2=x^3+x^2+3232x+167028\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 248.2.0.?, 744.8.0.?, 3720.16.0.? |
$[(-6, 384)]$ |
| 111600.cx2 |
111600dq2 |
111600.cx |
111600dq |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{8} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$3.734087326$ |
$1$ |
|
$2$ |
$497664$ |
$1.754971$ |
$36450495095/137276928$ |
$0.95530$ |
$3.79893$ |
$[0, 0, 0, 29085, -4480670]$ |
\(y^2=x^3+29085x-4480670\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 248.2.0.?, 744.8.0.?, 3720.16.0.? |
$[(311, 5886)]$ |
| 111600.ey2 |
111600fs2 |
111600.ey |
111600fs |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{21} \cdot 3^{8} \cdot 5^{8} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.559689$ |
$36450495095/137276928$ |
$0.95530$ |
$4.62977$ |
$[0, 0, 0, 727125, -560083750]$ |
\(y^2=x^3+727125x-560083750\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 248.2.0.?, 744.16.0.? |
$[ ]$ |
| 144150.k2 |
144150ec2 |
144150.k |
144150ec |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{8} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$6.889983104$ |
$1$ |
|
$0$ |
$12441600$ |
$3.034229$ |
$36450495095/137276928$ |
$0.95530$ |
$5.00941$ |
$[1, 1, 0, 4852550, 9657956500]$ |
\(y^2+xy=x^3+x^2+4852550x+9657956500\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 93.8.0.?, 248.2.0.?, 744.16.0.? |
$[(-18059/4, 3389047/4)]$ |
| 144150.eo2 |
144150t2 |
144150.eo |
144150t |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{2} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.229511$ |
$36450495095/137276928$ |
$0.95530$ |
$4.19647$ |
$[1, 0, 0, 194102, 77263652]$ |
\(y^2+xy=x^3+194102x+77263652\) |
3.4.0.a.1, 120.8.0.?, 248.2.0.?, 465.8.0.?, 744.8.0.?, $\ldots$ |
$[ ]$ |
| 148800.bw2 |
148800iw2 |
148800.bw |
148800iw |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{2} \cdot 5^{8} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1.162422748$ |
$1$ |
|
$2$ |
$2488320$ |
$2.356956$ |
$36450495095/137276928$ |
$0.95530$ |
$4.31369$ |
$[0, -1, 0, 323167, -166058463]$ |
\(y^2=x^3-x^2+323167x-166058463\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 186.8.0.?, 248.2.0.?, 744.16.0.? |
$[(467, 9300)]$ |
| 148800.ce2 |
148800ep2 |
148800.ce |
148800ep |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{2} \cdot 5^{2} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$1.552238$ |
$36450495095/137276928$ |
$0.95530$ |
$3.50291$ |
$[0, -1, 0, 12927, 1323297]$ |
\(y^2=x^3-x^2+12927x+1323297\) |
3.4.0.a.1, 120.8.0.?, 248.2.0.?, 744.8.0.?, 1860.8.0.?, $\ldots$ |
$[ ]$ |
| 148800.jf2 |
148800hv2 |
148800.jf |
148800hv |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{2} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1.660841428$ |
$1$ |
|
$2$ |
$497664$ |
$1.552238$ |
$36450495095/137276928$ |
$0.95530$ |
$3.50291$ |
$[0, 1, 0, 12927, -1323297]$ |
\(y^2=x^3+x^2+12927x-1323297\) |
3.4.0.a.1, 120.8.0.?, 248.2.0.?, 744.8.0.?, 930.8.0.?, $\ldots$ |
$[(267, 4608)]$ |
| 148800.ji2 |
148800s2 |
148800.ji |
148800s |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{2} \cdot 5^{8} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.356956$ |
$36450495095/137276928$ |
$0.95530$ |
$4.31369$ |
$[0, 1, 0, 323167, 166058463]$ |
\(y^2=x^3+x^2+323167x+166058463\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 248.2.0.?, 372.8.0.?, 744.16.0.? |
$[ ]$ |
| 227850.bv2 |
227850ht2 |
227850.bv |
227850ht |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{8} \cdot 7^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$4.185038444$ |
$1$ |
|
$2$ |
$4898880$ |
$2.290192$ |
$36450495095/137276928$ |
$0.95530$ |
$4.09975$ |
$[1, 1, 0, 247425, 111277125]$ |
\(y^2+xy=x^3+x^2+247425x+111277125\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 248.2.0.?, 744.8.0.?, 5208.16.0.? |
$[(435, 17145)]$ |
| 227850.jb2 |
227850ca2 |
227850.jb |
227850ca |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$979776$ |
$1.485472$ |
$36450495095/137276928$ |
$0.95530$ |
$3.31698$ |
$[1, 0, 0, 9897, 890217]$ |
\(y^2+xy=x^3+9897x+890217\) |
3.4.0.a.1, 105.8.0.?, 248.2.0.?, 744.8.0.?, 26040.16.0.? |
$[ ]$ |
| 432450.cr2 |
432450cr2 |
432450.cr |
432450cr |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{9} \cdot 3^{8} \cdot 5^{2} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$11.43095407$ |
$1$ |
|
$0$ |
$19906560$ |
$2.778816$ |
$36450495095/137276928$ |
$0.95530$ |
$4.34915$ |
$[1, -1, 0, 1746918, -2086118604]$ |
\(y^2+xy=x^3-x^2+1746918x-2086118604\) |
3.4.0.a.1, 120.8.0.?, 248.2.0.?, 465.8.0.?, 744.8.0.?, $\ldots$ |
$[(475635/2, 327571233/2)]$ |
| 432450.fr2 |
432450fr2 |
432450.fr |
432450fr |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{9} \cdot 3^{8} \cdot 5^{8} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1.579791531$ |
$1$ |
|
$4$ |
$99532800$ |
$3.583534$ |
$36450495095/137276928$ |
$0.95530$ |
$5.09327$ |
$[1, -1, 1, 43672945, -260721152553]$ |
\(y^2+xy+y=x^3-x^2+43672945x-260721152553\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 93.8.0.?, 248.2.0.?, 744.16.0.? |
$[(7169, 645090)]$ |
| 446400.gr2 |
446400gr2 |
446400.gr |
446400gr |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{8} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$5.112313704$ |
$1$ |
|
$2$ |
$3981312$ |
$2.101543$ |
$36450495095/137276928$ |
$0.95530$ |
$3.71379$ |
$[0, 0, 0, 116340, -35845360]$ |
\(y^2=x^3+116340x-35845360\) |
3.4.0.a.1, 120.8.0.?, 248.2.0.?, 744.8.0.?, 1860.8.0.?, $\ldots$ |
$[(1504, 59508)]$ |
| 446400.ha2 |
446400ha2 |
446400.ha |
446400ha |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{8} \cdot 5^{8} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$3.706858186$ |
$1$ |
|
$10$ |
$19906560$ |
$2.906261$ |
$36450495095/137276928$ |
$0.95530$ |
$4.45610$ |
$[0, 0, 0, 2908500, 4480670000]$ |
\(y^2=x^3+2908500x+4480670000\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 186.8.0.?, 248.2.0.?, 744.16.0.? |
$[(2134, 142848), (-284, 60264)]$ |
| 446400.mo2 |
446400mo2 |
446400.mo |
446400mo |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{8} \cdot 5^{8} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$15.12509417$ |
$1$ |
|
$6$ |
$19906560$ |
$2.906261$ |
$36450495095/137276928$ |
$0.95530$ |
$4.45610$ |
$[0, 0, 0, 2908500, -4480670000]$ |
\(y^2=x^3+2908500x-4480670000\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 248.2.0.?, 372.8.0.?, 744.16.0.? |
$[(2474, 133632), (17834, 2391552)]$ |
| 446400.nh2 |
446400nh2 |
446400.nh |
446400nh |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{27} \cdot 3^{8} \cdot 5^{2} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$2.387450071$ |
$1$ |
|
$2$ |
$3981312$ |
$2.101543$ |
$36450495095/137276928$ |
$0.95530$ |
$3.71379$ |
$[0, 0, 0, 116340, 35845360]$ |
\(y^2=x^3+116340x+35845360\) |
3.4.0.a.1, 120.8.0.?, 248.2.0.?, 744.8.0.?, 930.8.0.?, $\ldots$ |
$[(836, 26784)]$ |