Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
338.c2 338.c \( 2 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.169814351$ $[1, -1, 0, 1, 1]$ \(y^2+xy=x^3-x^2+x+1\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$
338.e2 338.e \( 2 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 137, 2643]$ \(y^2+xy+y=x^3-x^2+137x+2643\) 4.16.0-4.b.1.1, 7.16.0-7.a.1.2, 28.256.5-28.b.2.2, 91.48.0.?, 364.768.21.?
2704.h2 2704.h \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2197, -171366]$ \(y^2=x^3+2197x-171366\) 4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.2, 28.256.5-28.b.2.3, 91.24.0.?, $\ldots$
2704.i2 2704.i \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 13, -78]$ \(y^2=x^3+13x-78\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$
3042.e2 3042.e \( 2 \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1236, -72604]$ \(y^2+xy=x^3-x^2+1236x-72604\) 4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 21.16.0-7.a.1.2, 28.128.5.b.2, $\ldots$
3042.k2 3042.k \( 2 \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.752989816$ $[1, -1, 1, 7, -35]$ \(y^2+xy+y=x^3-x^2+7x-35\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 156.16.0.?, $\ldots$
8450.f2 8450.f \( 2 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.922463327$ $[1, -1, 0, 3433, 333841]$ \(y^2+xy=x^3-x^2+3433x+333841\) 4.8.0.b.1, 7.8.0.a.1, 20.16.0-4.b.1.1, 28.128.5.b.2, 35.16.0-7.a.1.1, $\ldots$
8450.s2 8450.s \( 2 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 20, 147]$ \(y^2+xy+y=x^3-x^2+20x+147\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 260.16.0.?, $\ldots$
10816.s2 10816.s \( 2^{6} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.648102797$ $[0, 0, 0, 52, 624]$ \(y^2=x^3+52x+624\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 104.16.0.?, $\ldots$
10816.t2 10816.t \( 2^{6} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 52, -624]$ \(y^2=x^3+52x-624\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 104.16.0.?, $\ldots$
10816.u2 10816.u \( 2^{6} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 8788, -1370928]$ \(y^2=x^3+8788x-1370928\) 4.8.0.b.1, 7.8.0.a.1, 8.16.0-4.b.1.1, 28.128.5.b.2, 56.256.5-28.b.2.3, $\ldots$
10816.v2 10816.v \( 2^{6} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.148826132$ $[0, 0, 0, 8788, 1370928]$ \(y^2=x^3+8788x+1370928\) 4.8.0.b.1, 7.8.0.a.1, 8.16.0-4.b.1.1, 28.128.5.b.2, 56.256.5-28.b.2.2, $\ldots$
16562.l2 16562.l \( 2 \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.285272102$ $[1, -1, 0, 40, -428]$ \(y^2+xy=x^3-x^2+40x-428\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.48.0.?, 364.768.21.?
16562.bm2 16562.bm \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.502664708$ $[1, -1, 1, 6728, -920097]$ \(y^2+xy+y=x^3-x^2+6728x-920097\) 4.8.0.b.1, 7.16.0-7.a.1.1, 28.256.5-28.b.2.1, 91.48.0.?, 364.768.21.?
24336.y2 24336.y \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.210792042$ $[0, 0, 0, 117, 2106]$ \(y^2=x^3+117x+2106\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 156.16.0.?, $\ldots$
24336.bk2 24336.bk \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.116626075$ $[0, 0, 0, 19773, 4626882]$ \(y^2=x^3+19773x+4626882\) 4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 28.128.5.b.2, 42.16.0-7.a.1.2, $\ldots$
40898.n2 40898.n \( 2 \cdot 11^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $2.173052936$ $[1, -1, 0, 16615, -3568031]$ \(y^2+xy=x^3-x^2+16615x-3568031\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 44.16.0-4.b.1.1, 77.16.0.?, $\ldots$
40898.bq2 40898.bq \( 2 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.469623747$ $[1, -1, 1, 98, -1647]$ \(y^2+xy+y=x^3-x^2+98x-1647\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
67600.br2 67600.br \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 325, -9750]$ \(y^2=x^3+325x-9750\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 260.16.0.?, $\ldots$
67600.bz2 67600.bz \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 54925, -21420750]$ \(y^2=x^3+54925x-21420750\) 4.8.0.b.1, 7.8.0.a.1, 20.16.0-4.b.1.1, 28.128.5.b.2, 70.16.0-7.a.1.2, $\ldots$
76050.cx2 76050.cx \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 183, -4159]$ \(y^2+xy=x^3-x^2+183x-4159\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
76050.dl2 76050.dl \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.503346943$ $[1, -1, 1, 30895, -9044603]$ \(y^2+xy+y=x^3-x^2+30895x-9044603\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 60.16.0-4.b.1.1, 91.24.0.?, $\ldots$
97344.ck2 97344.ck \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.064536395$ $[0, 0, 0, 79092, 37015056]$ \(y^2=x^3+79092x+37015056\) 4.8.0.b.1, 7.8.0.a.1, 24.16.0-4.b.1.1, 28.128.5.b.2, 91.24.0.?, $\ldots$
97344.ct2 97344.ct \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 79092, -37015056]$ \(y^2=x^3+79092x-37015056\) 4.8.0.b.1, 7.8.0.a.1, 24.16.0-4.b.1.1, 28.128.5.b.2, 91.24.0.?, $\ldots$
97344.dx2 97344.dx \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $2.578675675$ $[0, 0, 0, 468, -16848]$ \(y^2=x^3+468x-16848\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 312.16.0.?, $\ldots$
97344.eg2 97344.eg \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.052435146$ $[0, 0, 0, 468, 16848]$ \(y^2=x^3+468x+16848\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 312.16.0.?, $\ldots$
97682.d2 97682.d \( 2 \cdot 13^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $3.018462340$ $[1, -1, 0, 235, 5929]$ \(y^2+xy=x^3-x^2+235x+5929\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
97682.n2 97682.n \( 2 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 39683, 13145097]$ \(y^2+xy+y=x^3-x^2+39683x+13145097\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 68.16.0-4.b.1.1, 91.24.0.?, $\ldots$
122018.l2 122018.l \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 49570, -18378008]$ \(y^2+xy=x^3-x^2+49570x-18378008\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 76.16.0.?, 91.24.0.?, $\ldots$
122018.ba2 122018.ba \( 2 \cdot 13^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.205680318$ $[1, -1, 1, 293, -8433]$ \(y^2+xy+y=x^3-x^2+293x-8433\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
132496.by2 132496.by \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.001425090$ $[0, 0, 0, 637, 26754]$ \(y^2=x^3+637x+26754\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 182.48.0.?, $\ldots$
132496.ce2 132496.ce \( 2^{4} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.437701824$ $[0, 0, 0, 107653, 58778538]$ \(y^2=x^3+107653x+58778538\) 4.8.0.b.1, 7.8.0.a.1, 14.16.0-7.a.1.1, 28.256.5-28.b.2.4, 91.24.0.?, $\ldots$
149058.bh2 149058.bh \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.677018094$ $[1, -1, 0, 60555, 24782057]$ \(y^2+xy=x^3-x^2+60555x+24782057\) 4.8.0.b.1, 7.8.0.a.1, 21.16.0-7.a.1.1, 28.128.5.b.2, 84.256.5.?, $\ldots$
149058.hf2 149058.hf \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 358, 11197]$ \(y^2+xy+y=x^3-x^2+358x+11197\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 273.48.0.?, $\ldots$
178802.f2 178802.f \( 2 \cdot 13^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 430, -14936]$ \(y^2+xy=x^3-x^2+430x-14936\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
178802.s2 178802.s \( 2 \cdot 13^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $11.59275275$ $[1, -1, 1, 72638, -32596443]$ \(y^2+xy+y=x^3-x^2+72638x-32596443\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 92.16.0.?, $\ldots$
270400.ei2 270400.ei \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1300, -78000]$ \(y^2=x^3+1300x-78000\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
270400.ej2 270400.ej \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.971439771$ $[0, 0, 0, 219700, 171366000]$ \(y^2=x^3+219700x+171366000\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 40.16.0-4.b.1.1, 91.24.0.?, $\ldots$
270400.gc2 270400.gc \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 219700, -171366000]$ \(y^2=x^3+219700x-171366000\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 40.16.0-4.b.1.1, 91.24.0.?, $\ldots$
270400.gd2 270400.gd \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.978439809$ $[0, 0, 0, 1300, 78000]$ \(y^2=x^3+1300x+78000\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
284258.h2 284258.h \( 2 \cdot 13^{2} \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $10.03646963$ $[1, -1, 0, 115480, 65274964]$ \(y^2+xy=x^3-x^2+115480x+65274964\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 116.16.0.?, $\ldots$
284258.u2 284258.u \( 2 \cdot 13^{2} \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 683, 29553]$ \(y^2+xy+y=x^3-x^2+683x+29553\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
324818.e2 324818.e \( 2 \cdot 13^{2} \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 781, -36503]$ \(y^2+xy=x^3-x^2+781x-36503\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
324818.t2 324818.t \( 2 \cdot 13^{2} \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $7.243054103$ $[1, -1, 1, 131957, -79801185]$ \(y^2+xy+y=x^3-x^2+131957x-79801185\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 124.16.0.?, $\ldots$
327184.ch2 327184.ch \( 2^{4} \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.034177817$ $[0, 0, 0, 265837, 228088146]$ \(y^2=x^3+265837x+228088146\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 44.16.0-4.b.1.1, 91.24.0.?, $\ldots$
327184.ck2 327184.ck \( 2^{4} \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.898606729$ $[0, 0, 0, 1573, 103818]$ \(y^2=x^3+1573x+103818\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
368082.bq2 368082.bq \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.348915912$ $[1, -1, 0, 885, 43577]$ \(y^2+xy=x^3-x^2+885x+43577\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
368082.gj2 368082.gj \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 149533, 96187303]$ \(y^2+xy+y=x^3-x^2+149533x+96187303\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 132.16.0.?, $\ldots$
414050.cf2 414050.cf \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 168208, -114843884]$ \(y^2+xy=x^3-x^2+168208x-114843884\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 35.16.0-7.a.1.2, 91.24.0.?, $\ldots$
414050.fp2 414050.fp \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.819978252$ $[1, -1, 1, 995, -52503]$ \(y^2+xy+y=x^3-x^2+995x-52503\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$
Next   displayed columns for results