Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
338.c2 |
338a1 |
338.c |
338a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$0.169814351$ |
$1$ |
|
$6$ |
$12$ |
$-0.776028$ |
$351/4$ |
$1.27279$ |
$2.39029$ |
$[1, -1, 0, 1, 1]$ |
\(y^2+xy=x^3-x^2+x+1\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ |
$[(0, 1)]$ |
338.e2 |
338b1 |
338.e |
338b |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.16.0.1 |
7B.2.1 |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$156$ |
$0.506447$ |
$351/4$ |
$1.27279$ |
$5.03319$ |
$[1, -1, 1, 137, 2643]$ |
\(y^2+xy+y=x^3-x^2+137x+2643\) |
4.16.0-4.b.1.1, 7.16.0-7.a.1.2, 28.256.5-28.b.2.2, 91.48.0.?, 364.768.21.? |
$[]$ |
2704.h2 |
2704e1 |
2704.h |
2704e |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$3744$ |
$1.199594$ |
$351/4$ |
$1.27279$ |
$4.76132$ |
$[0, 0, 0, 2197, -171366]$ |
\(y^2=x^3+2197x-171366\) |
4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.2, 28.256.5-28.b.2.3, 91.24.0.?, $\ldots$ |
$[]$ |
2704.i2 |
2704d1 |
2704.i |
2704d |
$2$ |
$7$ |
\( 2^{4} \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$-0.082881$ |
$351/4$ |
$1.27279$ |
$2.81387$ |
$[0, 0, 0, 13, -78]$ |
\(y^2=x^3+13x-78\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[]$ |
3042.e2 |
3042b1 |
3042.e |
3042b |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$4992$ |
$1.055754$ |
$351/4$ |
$1.27279$ |
$4.47618$ |
$[1, -1, 0, 1236, -72604]$ |
\(y^2+xy=x^3-x^2+1236x-72604\) |
4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 21.16.0-7.a.1.2, 28.128.5.b.2, $\ldots$ |
$[]$ |
3042.k2 |
3042l1 |
3042.k |
3042l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$0.752989816$ |
$1$ |
|
$2$ |
$384$ |
$-0.226722$ |
$351/4$ |
$1.27279$ |
$2.55733$ |
$[1, -1, 1, 7, -35]$ |
\(y^2+xy+y=x^3-x^2+7x-35\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 156.16.0.?, $\ldots$ |
$[(7, 14)]$ |
8450.f2 |
8450b1 |
8450.f |
8450b |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 5^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1820$ |
$768$ |
$21$ |
$0.922463327$ |
$1$ |
|
$2$ |
$21840$ |
$1.311165$ |
$351/4$ |
$1.27279$ |
$4.30938$ |
$[1, -1, 0, 3433, 333841]$ |
\(y^2+xy=x^3-x^2+3433x+333841\) |
4.8.0.b.1, 7.8.0.a.1, 20.16.0-4.b.1.1, 28.128.5.b.2, 35.16.0-7.a.1.1, $\ldots$ |
$[(-42, 359)]$ |
8450.s2 |
8450o1 |
8450.s |
8450o |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 5^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1820$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1680$ |
$0.028691$ |
$351/4$ |
$1.27279$ |
$2.60735$ |
$[1, -1, 1, 20, 147]$ |
\(y^2+xy+y=x^3-x^2+20x+147\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 260.16.0.?, $\ldots$ |
$[]$ |
10816.s2 |
10816b1 |
10816.s |
10816b |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{20} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$728$ |
$768$ |
$21$ |
$0.648102797$ |
$1$ |
|
$4$ |
$2304$ |
$0.263693$ |
$351/4$ |
$1.27279$ |
$2.84165$ |
$[0, 0, 0, 52, 624]$ |
\(y^2=x^3+52x+624\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 104.16.0.?, $\ldots$ |
$[(14, 64)]$ |
10816.t2 |
10816z1 |
10816.t |
10816z |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{20} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$728$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.263693$ |
$351/4$ |
$1.27279$ |
$2.84165$ |
$[0, 0, 0, 52, -624]$ |
\(y^2=x^3+52x-624\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 104.16.0.?, $\ldots$ |
$[]$ |
10816.u2 |
10816y1 |
10816.u |
10816y |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{20} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.16.0.3, 7.8.0.1 |
7B |
$728$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$29952$ |
$1.546167$ |
$351/4$ |
$1.27279$ |
$4.49845$ |
$[0, 0, 0, 8788, -1370928]$ |
\(y^2=x^3+8788x-1370928\) |
4.8.0.b.1, 7.8.0.a.1, 8.16.0-4.b.1.1, 28.128.5.b.2, 56.256.5-28.b.2.3, $\ldots$ |
$[]$ |
10816.v2 |
10816a1 |
10816.v |
10816a |
$2$ |
$7$ |
\( 2^{6} \cdot 13^{2} \) |
\( - 2^{20} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.16.0.3, 7.8.0.1 |
7B |
$728$ |
$768$ |
$21$ |
$1.148826132$ |
$1$ |
|
$2$ |
$29952$ |
$1.546167$ |
$351/4$ |
$1.27279$ |
$4.49845$ |
$[0, 0, 0, 8788, 1370928]$ |
\(y^2=x^3+8788x+1370928\) |
4.8.0.b.1, 7.8.0.a.1, 8.16.0-4.b.1.1, 28.128.5.b.2, 56.256.5-28.b.2.2, $\ldots$ |
$[(1014, 32448)]$ |
16562.l2 |
16562d1 |
16562.l |
16562d |
$2$ |
$7$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{6} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1.285272102$ |
$1$ |
|
$12$ |
$3456$ |
$0.196927$ |
$351/4$ |
$1.27279$ |
$2.63455$ |
$[1, -1, 0, 40, -428]$ |
\(y^2+xy=x^3-x^2+40x-428\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.48.0.?, 364.768.21.? |
$[(9, 20), (58, 412)]$ |
16562.bm2 |
16562be1 |
16562.bm |
16562be |
$2$ |
$7$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.16.0.2 |
7B.2.3 |
$364$ |
$768$ |
$21$ |
$2.502664708$ |
$1$ |
|
$0$ |
$44928$ |
$1.479403$ |
$351/4$ |
$1.27279$ |
$4.21868$ |
$[1, -1, 1, 6728, -920097]$ |
\(y^2+xy+y=x^3-x^2+6728x-920097\) |
4.8.0.b.1, 7.16.0-7.a.1.1, 28.256.5-28.b.2.1, 91.48.0.?, 364.768.21.? |
$[(2367/2, 113563/2)]$ |
24336.y2 |
24336bo1 |
24336.y |
24336bo |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$1.210792042$ |
$1$ |
|
$4$ |
$9216$ |
$0.466425$ |
$351/4$ |
$1.27279$ |
$2.85436$ |
$[0, 0, 0, 117, 2106]$ |
\(y^2=x^3+117x+2106\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 156.16.0.?, $\ldots$ |
$[(-9, 18)]$ |
24336.bk2 |
24336bk1 |
24336.bk |
24336bk |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$4.116626075$ |
$1$ |
|
$2$ |
$119808$ |
$1.748899$ |
$351/4$ |
$1.27279$ |
$4.37814$ |
$[0, 0, 0, 19773, 4626882]$ |
\(y^2=x^3+19773x+4626882\) |
4.8.0.b.1, 7.8.0.a.1, 12.16.0-4.b.1.1, 28.128.5.b.2, 42.16.0-7.a.1.2, $\ldots$ |
$[(207, 4194)]$ |
40898.n2 |
40898f1 |
40898.n |
40898f |
$2$ |
$7$ |
\( 2 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 11^{6} \cdot 13^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$4004$ |
$768$ |
$21$ |
$2.173052936$ |
$1$ |
|
$8$ |
$199680$ |
$1.705395$ |
$351/4$ |
$1.27279$ |
$4.11494$ |
$[1, -1, 0, 16615, -3568031]$ |
\(y^2+xy=x^3-x^2+16615x-3568031\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 44.16.0-4.b.1.1, 77.16.0.?, $\ldots$ |
$[(465, 9992), (3000, 162937)]$ |
40898.bq2 |
40898bg1 |
40898.bq |
40898bg |
$2$ |
$7$ |
\( 2 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 11^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$4004$ |
$768$ |
$21$ |
$3.469623747$ |
$1$ |
|
$0$ |
$15360$ |
$0.422920$ |
$351/4$ |
$1.27279$ |
$2.66566$ |
$[1, -1, 1, 98, -1647]$ |
\(y^2+xy+y=x^3-x^2+98x-1647\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(213/4, 2325/4)]$ |
67600.br2 |
67600bk1 |
67600.br |
67600bk |
$2$ |
$7$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 5^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1820$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$0.721838$ |
$351/4$ |
$1.27279$ |
$2.86774$ |
$[0, 0, 0, 325, -9750]$ |
\(y^2=x^3+325x-9750\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 260.16.0.?, $\ldots$ |
$[]$ |
67600.bz2 |
67600bj1 |
67600.bz |
67600bj |
$2$ |
$7$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 5^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1820$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$524160$ |
$2.004314$ |
$351/4$ |
$1.27279$ |
$4.25154$ |
$[0, 0, 0, 54925, -21420750]$ |
\(y^2=x^3+54925x-21420750\) |
4.8.0.b.1, 7.8.0.a.1, 20.16.0-4.b.1.1, 28.128.5.b.2, 70.16.0-7.a.1.2, $\ldots$ |
$[]$ |
76050.cx2 |
76050bs1 |
76050.cx |
76050bs |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$5460$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$0.577997$ |
$351/4$ |
$1.27279$ |
$2.68411$ |
$[1, -1, 0, 183, -4159]$ |
\(y^2+xy=x^3-x^2+183x-4159\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[]$ |
76050.dl2 |
76050fc1 |
76050.dl |
76050fc |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$5460$ |
$768$ |
$21$ |
$3.503346943$ |
$1$ |
|
$2$ |
$698880$ |
$1.860472$ |
$351/4$ |
$1.27279$ |
$4.05340$ |
$[1, -1, 1, 30895, -9044603]$ |
\(y^2+xy+y=x^3-x^2+30895x-9044603\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 60.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[(4183, 268646)]$ |
97344.ck2 |
97344ez1 |
97344.ck |
97344ez |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$2184$ |
$768$ |
$21$ |
$1.064536395$ |
$1$ |
|
$4$ |
$958464$ |
$2.095474$ |
$351/4$ |
$1.27279$ |
$4.21180$ |
$[0, 0, 0, 79092, 37015056]$ |
\(y^2=x^3+79092x+37015056\) |
4.8.0.b.1, 7.8.0.a.1, 24.16.0-4.b.1.1, 28.128.5.b.2, 91.24.0.?, $\ldots$ |
$[(0, 6084)]$ |
97344.ct2 |
97344bn1 |
97344.ct |
97344bn |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$2184$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$958464$ |
$2.095474$ |
$351/4$ |
$1.27279$ |
$4.21180$ |
$[0, 0, 0, 79092, -37015056]$ |
\(y^2=x^3+79092x-37015056\) |
4.8.0.b.1, 7.8.0.a.1, 24.16.0-4.b.1.1, 28.128.5.b.2, 91.24.0.?, $\ldots$ |
$[]$ |
97344.dx2 |
97344bf1 |
97344.dx |
97344bf |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$2184$ |
$768$ |
$21$ |
$2.578675675$ |
$1$ |
|
$8$ |
$73728$ |
$0.812999$ |
$351/4$ |
$1.27279$ |
$2.87194$ |
$[0, 0, 0, 468, -16848]$ |
\(y^2=x^3+468x-16848\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 312.16.0.?, $\ldots$ |
$[(22, 64), (36, 216)]$ |
97344.eg2 |
97344ev1 |
97344.eg |
97344ev |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$2184$ |
$768$ |
$21$ |
$3.052435146$ |
$1$ |
|
$2$ |
$73728$ |
$0.812999$ |
$351/4$ |
$1.27279$ |
$2.87194$ |
$[0, 0, 0, 468, 16848]$ |
\(y^2=x^3+468x+16848\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 312.16.0.?, $\ldots$ |
$[(108, 1152)]$ |
97682.d2 |
97682a1 |
97682.d |
97682a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 17^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6188$ |
$768$ |
$21$ |
$3.018462340$ |
$1$ |
|
$2$ |
$60480$ |
$0.640579$ |
$351/4$ |
$1.27279$ |
$2.69099$ |
$[1, -1, 0, 235, 5929]$ |
\(y^2+xy=x^3-x^2+235x+5929\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(0, 77)]$ |
97682.n2 |
97682k1 |
97682.n |
97682k |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 17^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6188$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$786240$ |
$1.923054$ |
$351/4$ |
$1.27279$ |
$4.03045$ |
$[1, -1, 1, 39683, 13145097]$ |
\(y^2+xy+y=x^3-x^2+39683x+13145097\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 68.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[]$ |
122018.l2 |
122018e1 |
122018.l |
122018e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6916$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1123200$ |
$1.978666$ |
$351/4$ |
$1.27279$ |
$4.01088$ |
$[1, -1, 0, 49570, -18378008]$ |
\(y^2+xy=x^3-x^2+49570x-18378008\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 76.16.0.?, 91.24.0.?, $\ldots$ |
$[]$ |
122018.ba2 |
122018bb1 |
122018.ba |
122018bb |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$6916$ |
$768$ |
$21$ |
$3.205680318$ |
$1$ |
|
$2$ |
$86400$ |
$0.696192$ |
$351/4$ |
$1.27279$ |
$2.69686$ |
$[1, -1, 1, 293, -8433]$ |
\(y^2+xy+y=x^3-x^2+293x-8433\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(651, 16280)]$ |
132496.by2 |
132496bo1 |
132496.by |
132496bo |
$2$ |
$7$ |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$2.001425090$ |
$1$ |
|
$2$ |
$82944$ |
$0.890075$ |
$351/4$ |
$1.27279$ |
$2.87529$ |
$[0, 0, 0, 637, 26754]$ |
\(y^2=x^3+637x+26754\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 182.48.0.?, $\ldots$ |
$[(14, 196)]$ |
132496.ce2 |
132496bu1 |
132496.ce |
132496bu |
$2$ |
$7$ |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$2.437701824$ |
$1$ |
|
$0$ |
$1078272$ |
$2.172550$ |
$351/4$ |
$1.27279$ |
$4.18013$ |
$[0, 0, 0, 107653, 58778538]$ |
\(y^2=x^3+107653x+58778538\) |
4.8.0.b.1, 7.8.0.a.1, 14.16.0-7.a.1.1, 28.256.5-28.b.2.4, 91.24.0.?, $\ldots$ |
$[(-1183/2, 8281/2)]$ |
149058.bh2 |
149058fb1 |
149058.bh |
149058fb |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$0.677018094$ |
$1$ |
|
$4$ |
$1437696$ |
$2.028709$ |
$351/4$ |
$1.27279$ |
$3.99389$ |
$[1, -1, 0, 60555, 24782057]$ |
\(y^2+xy=x^3-x^2+60555x+24782057\) |
4.8.0.b.1, 7.8.0.a.1, 21.16.0-7.a.1.1, 28.128.5.b.2, 84.256.5.?, $\ldots$ |
$[(296, 8133)]$ |
149058.hf2 |
149058bv1 |
149058.hf |
149058bv |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1092$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$110592$ |
$0.746233$ |
$351/4$ |
$1.27279$ |
$2.70195$ |
$[1, -1, 1, 358, 11197]$ |
\(y^2+xy+y=x^3-x^2+358x+11197\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 273.48.0.?, $\ldots$ |
$[]$ |
178802.f2 |
178802v1 |
178802.f |
178802v |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 23^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$8372$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$147840$ |
$0.791719$ |
$351/4$ |
$1.27279$ |
$2.70644$ |
$[1, -1, 0, 430, -14936]$ |
\(y^2+xy=x^3-x^2+430x-14936\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[]$ |
178802.s2 |
178802h1 |
178802.s |
178802h |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 23^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$8372$ |
$768$ |
$21$ |
$11.59275275$ |
$1$ |
|
$2$ |
$1921920$ |
$2.074192$ |
$351/4$ |
$1.27279$ |
$3.97894$ |
$[1, -1, 1, 72638, -32596443]$ |
\(y^2+xy+y=x^3-x^2+72638x-32596443\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 92.16.0.?, $\ldots$ |
$[(3522801, 6610227585)]$ |
270400.ei2 |
270400ei1 |
270400.ei |
270400ei |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 5^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$3640$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$322560$ |
$1.068411$ |
$351/4$ |
$1.27279$ |
$2.88240$ |
$[0, 0, 0, 1300, -78000]$ |
\(y^2=x^3+1300x-78000\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[]$ |
270400.ej2 |
270400ej1 |
270400.ej |
270400ej |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 5^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$3640$ |
$768$ |
$21$ |
$4.971439771$ |
$1$ |
|
$2$ |
$4193280$ |
$2.350887$ |
$351/4$ |
$1.27279$ |
$4.11282$ |
$[0, 0, 0, 219700, 171366000]$ |
\(y^2=x^3+219700x+171366000\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 40.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[(1166, 44864)]$ |
270400.gc2 |
270400gc1 |
270400.gc |
270400gc |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 5^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$3640$ |
$768$ |
$21$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4193280$ |
$2.350887$ |
$351/4$ |
$1.27279$ |
$4.11282$ |
$[0, 0, 0, 219700, -171366000]$ |
\(y^2=x^3+219700x-171366000\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 40.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[]$ |
270400.gd2 |
270400gd1 |
270400.gd |
270400gd |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 5^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$3640$ |
$768$ |
$21$ |
$3.978439809$ |
$1$ |
|
$0$ |
$322560$ |
$1.068411$ |
$351/4$ |
$1.27279$ |
$2.88240$ |
$[0, 0, 0, 1300, 78000]$ |
\(y^2=x^3+1300x+78000\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(-74/3, 6976/3)]$ |
284258.h2 |
284258h1 |
284258.h |
284258h |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 29^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$10556$ |
$768$ |
$21$ |
$10.03646963$ |
$1$ |
|
$0$ |
$3926832$ |
$2.190094$ |
$351/4$ |
$1.27279$ |
$3.94280$ |
$[1, -1, 0, 115480, 65274964]$ |
\(y^2+xy=x^3-x^2+115480x+65274964\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 116.16.0.?, $\ldots$ |
$[(24114/5, 4035002/5)]$ |
284258.u2 |
284258u1 |
284258.u |
284258u |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 29^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$10556$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$302064$ |
$0.907620$ |
$351/4$ |
$1.27279$ |
$2.71728$ |
$[1, -1, 1, 683, 29553]$ |
\(y^2+xy+y=x^3-x^2+683x+29553\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[]$ |
324818.e2 |
324818e1 |
324818.e |
324818e |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 31^{2} \) |
\( - 2^{2} \cdot 13^{2} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$11284$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$362880$ |
$0.940966$ |
$351/4$ |
$1.27279$ |
$2.72025$ |
$[1, -1, 0, 781, -36503]$ |
\(y^2+xy=x^3-x^2+781x-36503\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[]$ |
324818.t2 |
324818t1 |
324818.t |
324818t |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \cdot 31^{2} \) |
\( - 2^{2} \cdot 13^{8} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$11284$ |
$768$ |
$21$ |
$7.243054103$ |
$1$ |
|
$0$ |
$4717440$ |
$2.223442$ |
$351/4$ |
$1.27279$ |
$3.93289$ |
$[1, -1, 1, 131957, -79801185]$ |
\(y^2+xy+y=x^3-x^2+131957x-79801185\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 124.16.0.?, $\ldots$ |
$[(1871635/3, 2557732828/3)]$ |
327184.ch2 |
327184ch1 |
327184.ch |
327184ch |
$2$ |
$7$ |
\( 2^{4} \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 11^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$4004$ |
$768$ |
$21$ |
$4.034177817$ |
$1$ |
|
$2$ |
$4792320$ |
$2.398540$ |
$351/4$ |
$1.27279$ |
$4.09612$ |
$[0, 0, 0, 265837, 228088146]$ |
\(y^2=x^3+265837x+228088146\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 44.16.0-4.b.1.1, 91.24.0.?, $\ldots$ |
$[(18590, 2535676)]$ |
327184.ck2 |
327184ck1 |
327184.ck |
327184ck |
$2$ |
$7$ |
\( 2^{4} \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 11^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$4004$ |
$768$ |
$21$ |
$1.898606729$ |
$1$ |
|
$2$ |
$368640$ |
$1.116066$ |
$351/4$ |
$1.27279$ |
$2.88417$ |
$[0, 0, 0, 1573, 103818]$ |
\(y^2=x^3+1573x+103818\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(-22, 242)]$ |
368082.bq2 |
368082bq1 |
368082.bq |
368082bq |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 11^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$12012$ |
$768$ |
$21$ |
$1.348915912$ |
$1$ |
|
$2$ |
$491520$ |
$0.972226$ |
$351/4$ |
$1.27279$ |
$2.72298$ |
$[1, -1, 0, 885, 43577]$ |
\(y^2+xy=x^3-x^2+885x+43577\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(14, 235)]$ |
368082.gj2 |
368082gj1 |
368082.gj |
368082gj |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 11^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$12012$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$6389760$ |
$2.254700$ |
$351/4$ |
$1.27279$ |
$3.92379$ |
$[1, -1, 1, 149533, 96187303]$ |
\(y^2+xy+y=x^3-x^2+149533x+96187303\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 132.16.0.?, $\ldots$ |
$[]$ |
414050.cf2 |
414050cf1 |
414050.cf |
414050cf |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 5^{6} \cdot 7^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1820$ |
$768$ |
$21$ |
$1$ |
$4$ |
$2$ |
$0$ |
$6289920$ |
$2.284122$ |
$351/4$ |
$1.27279$ |
$3.91539$ |
$[1, -1, 0, 168208, -114843884]$ |
\(y^2+xy=x^3-x^2+168208x-114843884\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 35.16.0-7.a.1.2, 91.24.0.?, $\ldots$ |
$[]$ |
414050.fp2 |
414050fp1 |
414050.fp |
414050fp |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 5^{6} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$1820$ |
$768$ |
$21$ |
$6.819978252$ |
$1$ |
|
$0$ |
$483840$ |
$1.001646$ |
$351/4$ |
$1.27279$ |
$2.72550$ |
$[1, -1, 1, 995, -52503]$ |
\(y^2+xy+y=x^3-x^2+995x-52503\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.24.0.?, 364.384.21.?, $\ldots$ |
$[(6045/4, 458817/4)]$ |