Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
2760.d4 |
2760a4 |
2760.d |
2760a |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1792$ |
$0.529248$ |
$320251964/4197615$ |
$[0, -1, 0, 144, 3036]$ |
\(y^2=x^3-x^2+144x+3036\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 20.12.0-4.c.1.1, 30.6.0.a.1, $\ldots$ |
5520.q4 |
5520e4 |
5520.q |
5520e |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3584$ |
$0.529248$ |
$320251964/4197615$ |
$[0, 1, 0, 144, -3036]$ |
\(y^2=x^3+x^2+144x-3036\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 20.12.0-4.c.1.2, 30.6.0.a.1, $\ldots$ |
8280.v4 |
8280v4 |
8280.v |
8280v |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5 \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$14336$ |
$1.078554$ |
$320251964/4197615$ |
$[0, 0, 0, 1293, -83266]$ |
\(y^2=x^3+1293x-83266\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 30.6.0.a.1, 60.24.0-60.g.1.1, 552.24.0.?, $\ldots$ |
13800.n4 |
13800w4 |
13800.n |
13800w |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5^{7} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2760$ |
$48$ |
$0$ |
$2.779025845$ |
$1$ |
|
$3$ |
$43008$ |
$1.333967$ |
$320251964/4197615$ |
$[0, 1, 0, 3592, 386688]$ |
\(y^2=x^3+x^2+3592x+386688\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 30.6.0.a.1, 60.24.0-60.g.1.1, 552.24.0.?, $\ldots$ |
16560.be4 |
16560v4 |
16560.be |
16560v |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5 \cdot 23^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$28672$ |
$1.078554$ |
$320251964/4197615$ |
$[0, 0, 0, 1293, 83266]$ |
\(y^2=x^3+1293x+83266\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 30.6.0.a.1, 60.24.0-60.g.1.3, 552.24.0.?, $\ldots$ |
22080.v4 |
22080cd3 |
22080.v |
22080cd |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{16} \cdot 3 \cdot 5 \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$3.988660527$ |
$1$ |
|
$3$ |
$28672$ |
$0.875822$ |
$320251964/4197615$ |
$[0, -1, 0, 575, -24863]$ |
\(y^2=x^3-x^2+575x-24863\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 30.6.0.a.1, 40.12.0-4.c.1.2, $\ldots$ |
22080.db4 |
22080br3 |
22080.db |
22080br |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 23 \) |
\( - 2^{16} \cdot 3 \cdot 5 \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$28672$ |
$0.875822$ |
$320251964/4197615$ |
$[0, 1, 0, 575, 24863]$ |
\(y^2=x^3+x^2+575x+24863\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 30.6.0.a.1, 40.12.0-4.c.1.1, $\ldots$ |
27600.bp4 |
27600j3 |
27600.bp |
27600j |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5^{7} \cdot 23^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$86016$ |
$1.333967$ |
$320251964/4197615$ |
$[0, -1, 0, 3592, -386688]$ |
\(y^2=x^3-x^2+3592x-386688\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 30.6.0.a.1, 60.24.0-60.g.1.3, 552.24.0.?, $\ldots$ |
41400.b4 |
41400o3 |
41400.b |
41400o |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{7} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1.242301643$ |
$1$ |
|
$7$ |
$344064$ |
$1.883274$ |
$320251964/4197615$ |
$[0, 0, 0, 32325, -10408250]$ |
\(y^2=x^3+32325x-10408250\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 20.12.0-4.c.1.1, 30.6.0.a.1, $\ldots$ |
63480.f4 |
63480d3 |
63480.f |
63480d |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 23^{2} \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 23^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2760$ |
$48$ |
$0$ |
$15.29296400$ |
$1$ |
|
$1$ |
$946176$ |
$2.096996$ |
$320251964/4197615$ |
$[0, -1, 0, 76000, -37547460]$ |
\(y^2=x^3-x^2+76000x-37547460\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
66240.e4 |
66240ff3 |
66240.e |
66240ff |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{16} \cdot 3^{7} \cdot 5 \cdot 23^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$2760$ |
$48$ |
$0$ |
$2.461720013$ |
$1$ |
|
$17$ |
$229376$ |
$1.425129$ |
$320251964/4197615$ |
$[0, 0, 0, 5172, 666128]$ |
\(y^2=x^3+5172x+666128\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
66240.dd4 |
66240bm3 |
66240.dd |
66240bm |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 23 \) |
\( - 2^{16} \cdot 3^{7} \cdot 5 \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$229376$ |
$1.425129$ |
$320251964/4197615$ |
$[0, 0, 0, 5172, -666128]$ |
\(y^2=x^3+5172x-666128\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
82800.fs4 |
82800z3 |
82800.fs |
82800z |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{7} \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$688128$ |
$1.883274$ |
$320251964/4197615$ |
$[0, 0, 0, 32325, 10408250]$ |
\(y^2=x^3+32325x+10408250\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 20.12.0-4.c.1.2, 30.6.0.a.1, $\ldots$ |
110400.f4 |
110400s3 |
110400.f |
110400s |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{16} \cdot 3 \cdot 5^{7} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2760$ |
$48$ |
$0$ |
$3.136630799$ |
$1$ |
|
$5$ |
$688128$ |
$1.680542$ |
$320251964/4197615$ |
$[0, -1, 0, 14367, 3079137]$ |
\(y^2=x^3-x^2+14367x+3079137\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
110400.jo4 |
110400iq3 |
110400.jo |
110400iq |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) |
\( - 2^{16} \cdot 3 \cdot 5^{7} \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$688128$ |
$1.680542$ |
$320251964/4197615$ |
$[0, 1, 0, 14367, -3079137]$ |
\(y^2=x^3+x^2+14367x-3079137\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
126960.di4 |
126960v3 |
126960.di |
126960v |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 23^{2} \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 23^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$1892352$ |
$2.096996$ |
$320251964/4197615$ |
$[0, 1, 0, 76000, 37547460]$ |
\(y^2=x^3+x^2+76000x+37547460\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
135240.do4 |
135240ci3 |
135240.do |
135240ci |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 7^{6} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19320$ |
$48$ |
$0$ |
$9.400386029$ |
$1$ |
|
$1$ |
$516096$ |
$1.502203$ |
$320251964/4197615$ |
$[0, 1, 0, 7040, -1055440]$ |
\(y^2=x^3+x^2+7040x-1055440\) |
2.3.0.a.1, 4.6.0.c.1, 30.6.0.a.1, 60.12.0.g.1, 84.12.0.?, $\ldots$ |
190440.d4 |
190440j4 |
190440.d |
190440j |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23^{2} \) |
\( - 2^{10} \cdot 3^{7} \cdot 5 \cdot 23^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$7569408$ |
$2.646301$ |
$320251964/4197615$ |
$[0, 0, 0, 683997, 1013097422]$ |
\(y^2=x^3+683997x+1013097422\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 30.6.0.a.1, 40.12.0-4.c.1.3, $\ldots$ |
270480.cr4 |
270480cr4 |
270480.cr |
270480cr |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 7^{6} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19320$ |
$48$ |
$0$ |
$3.434485757$ |
$1$ |
|
$3$ |
$1032192$ |
$1.502203$ |
$320251964/4197615$ |
$[0, -1, 0, 7040, 1055440]$ |
\(y^2=x^3-x^2+7040x+1055440\) |
2.3.0.a.1, 4.6.0.c.1, 30.6.0.a.1, 60.12.0.g.1, 84.12.0.?, $\ldots$ |
317400.cx4 |
317400cx3 |
317400.cx |
317400cx |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{10} \cdot 3 \cdot 5^{7} \cdot 23^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$22708224$ |
$2.901714$ |
$320251964/4197615$ |
$[0, 1, 0, 1899992, -4689632512]$ |
\(y^2=x^3+x^2+1899992x-4689632512\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.5, 30.6.0.a.1, 40.12.0-4.c.1.5, $\ldots$ |
331200.bs4 |
331200bs3 |
331200.bs |
331200bs |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{16} \cdot 3^{7} \cdot 5^{7} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1.802189667$ |
$1$ |
|
$5$ |
$5505024$ |
$2.229847$ |
$320251964/4197615$ |
$[0, 0, 0, 129300, -83266000]$ |
\(y^2=x^3+129300x-83266000\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 30.6.0.a.1, 40.12.0-4.c.1.1, $\ldots$ |
331200.pn4 |
331200pn4 |
331200.pn |
331200pn |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{16} \cdot 3^{7} \cdot 5^{7} \cdot 23^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$1.811095068$ |
$1$ |
|
$5$ |
$5505024$ |
$2.229847$ |
$320251964/4197615$ |
$[0, 0, 0, 129300, 83266000]$ |
\(y^2=x^3+129300x+83266000\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 30.6.0.a.1, 40.12.0-4.c.1.2, $\ldots$ |
333960.b4 |
333960b3 |
333960.b |
333960b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 11^{6} \cdot 23^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$30360$ |
$48$ |
$0$ |
$11.23601942$ |
$1$ |
|
$7$ |
$2293760$ |
$1.728197$ |
$320251964/4197615$ |
$[0, -1, 0, 17384, -4110500]$ |
\(y^2=x^3-x^2+17384x-4110500\) |
2.3.0.a.1, 4.6.0.c.1, 30.6.0.a.1, 60.12.0.g.1, 132.12.0.?, $\ldots$ |
380880.dd4 |
380880dd3 |
380880.dd |
380880dd |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 23^{2} \) |
\( - 2^{10} \cdot 3^{7} \cdot 5 \cdot 23^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2760$ |
$48$ |
$0$ |
$7.430473281$ |
$1$ |
|
$1$ |
$15138816$ |
$2.646301$ |
$320251964/4197615$ |
$[0, 0, 0, 683997, -1013097422]$ |
\(y^2=x^3+683997x-1013097422\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 30.6.0.a.1, 40.12.0-4.c.1.3, $\ldots$ |
405720.i4 |
405720i4 |
405720.i |
405720i |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5 \cdot 7^{6} \cdot 23^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$19320$ |
$48$ |
$0$ |
$7.111862904$ |
$1$ |
|
$13$ |
$4128768$ |
$2.051510$ |
$320251964/4197615$ |
$[0, 0, 0, 63357, 28560238]$ |
\(y^2=x^3+63357x+28560238\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 30.6.0.a.1, 60.12.0.g.1, $\ldots$ |
466440.n4 |
466440n4 |
466440.n |
466440n |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 23 \) |
\( - 2^{10} \cdot 3 \cdot 5 \cdot 13^{6} \cdot 23^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$35880$ |
$48$ |
$0$ |
$10.06860982$ |
$1$ |
|
$7$ |
$3440640$ |
$1.811724$ |
$320251964/4197615$ |
$[0, -1, 0, 24280, 6767292]$ |
\(y^2=x^3-x^2+24280x+6767292\) |
2.3.0.a.1, 4.6.0.c.1, 30.6.0.a.1, 60.12.0.g.1, 156.12.0.?, $\ldots$ |