Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
6240.d1 |
6240a3 |
6240.d |
6240a |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$2.486877264$ |
$1$ |
|
$3$ |
$1536$ |
$0.317203$ |
$30488290624/195$ |
$[0, -1, 0, -1041, 13281]$ |
\(y^2=x^3-x^2-1041x+13281\) |
6240.u1 |
6240ba2 |
6240.u |
6240ba |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$5.415464264$ |
$1$ |
|
$1$ |
$1536$ |
$0.317203$ |
$30488290624/195$ |
$[0, 1, 0, -1041, -13281]$ |
\(y^2=x^3+x^2-1041x-13281\) |
12480.bj3 |
12480o1 |
12480.bj |
12480o |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \) |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$3.583022007$ |
$4$ |
$2$ |
$3$ |
$1536$ |
$-0.029371$ |
$30488290624/195$ |
$[0, -1, 0, -260, -1530]$ |
\(y^2=x^3-x^2-260x-1530\) |
12480.cx3 |
12480bh1 |
12480.cx |
12480bh |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \) |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$1536$ |
$-0.029371$ |
$30488290624/195$ |
$[0, 1, 0, -260, 1530]$ |
\(y^2=x^3+x^2-260x+1530\) |
18720.bh1 |
18720bj2 |
18720.bh |
18720bj |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( 2^{12} \cdot 3^{7} \cdot 5 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$12288$ |
$0.866508$ |
$30488290624/195$ |
$[0, 0, 0, -9372, -349216]$ |
\(y^2=x^3-9372x-349216\) |
18720.bi1 |
18720n3 |
18720.bi |
18720n |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( 2^{12} \cdot 3^{7} \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3.802975703$ |
$1$ |
|
$3$ |
$12288$ |
$0.866508$ |
$30488290624/195$ |
$[0, 0, 0, -9372, 349216]$ |
\(y^2=x^3-9372x+349216\) |
31200.k1 |
31200d4 |
31200.k |
31200d |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 5^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$36864$ |
$1.121922$ |
$30488290624/195$ |
$[0, -1, 0, -26033, -1608063]$ |
\(y^2=x^3-x^2-26033x-1608063\) |
31200.bz1 |
31200cb4 |
31200.bz |
31200cb |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 5^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$36864$ |
$1.121922$ |
$30488290624/195$ |
$[0, 1, 0, -26033, 1608063]$ |
\(y^2=x^3+x^2-26033x+1608063\) |
37440.bl3 |
37440bk1 |
37440.bl |
37440bk |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( 2^{6} \cdot 3^{7} \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2.444114752$ |
$1$ |
|
$3$ |
$12288$ |
$0.519935$ |
$30488290624/195$ |
$[0, 0, 0, -2343, 43652]$ |
\(y^2=x^3-2343x+43652\) |
37440.bo3 |
37440bj1 |
37440.bo |
37440bj |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) |
\( 2^{6} \cdot 3^{7} \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3.870828347$ |
$4$ |
$2$ |
$3$ |
$12288$ |
$0.519935$ |
$30488290624/195$ |
$[0, 0, 0, -2343, -43652]$ |
\(y^2=x^3-2343x-43652\) |
62400.cp3 |
62400a1 |
62400.cp |
62400a |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 3 \cdot 5^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3.210375889$ |
$1$ |
|
$3$ |
$36864$ |
$0.775348$ |
$30488290624/195$ |
$[0, -1, 0, -6508, 204262]$ |
\(y^2=x^3-x^2-6508x+204262\) |
62400.fp3 |
62400ca1 |
62400.fp |
62400ca |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 3 \cdot 5^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$36864$ |
$0.775348$ |
$30488290624/195$ |
$[0, 1, 0, -6508, -204262]$ |
\(y^2=x^3+x^2-6508x-204262\) |
81120.v1 |
81120bg4 |
81120.v |
81120bg |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 13^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$8.963245492$ |
$1$ |
|
$3$ |
$258048$ |
$1.599678$ |
$30488290624/195$ |
$[0, -1, 0, -175985, 28474497]$ |
\(y^2=x^3-x^2-175985x+28474497\) |
81120.bw1 |
81120u4 |
81120.bw |
81120u |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$19.09953496$ |
$1$ |
|
$1$ |
$258048$ |
$1.599678$ |
$30488290624/195$ |
$[0, 1, 0, -175985, -28474497]$ |
\(y^2=x^3+x^2-175985x-28474497\) |
93600.co1 |
93600bh4 |
93600.co |
93600bh |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 3^{7} \cdot 5^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$8.370807812$ |
$1$ |
|
$1$ |
$294912$ |
$1.671228$ |
$30488290624/195$ |
$[0, 0, 0, -234300, -43652000]$ |
\(y^2=x^3-234300x-43652000\) |
93600.cp1 |
93600dt4 |
93600.cp |
93600dt |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 3^{7} \cdot 5^{7} \cdot 13 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$294912$ |
$1.671228$ |
$30488290624/195$ |
$[0, 0, 0, -234300, 43652000]$ |
\(y^2=x^3-234300x+43652000\) |
162240.w3 |
162240hx1 |
162240.w |
162240hx |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$8.746394472$ |
$4$ |
$2$ |
$1$ |
$258048$ |
$1.253103$ |
$30488290624/195$ |
$[0, -1, 0, -43996, -3537314]$ |
\(y^2=x^3-x^2-43996x-3537314\) |
162240.fl3 |
162240gi1 |
162240.fl |
162240gi |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$258048$ |
$1.253103$ |
$30488290624/195$ |
$[0, 1, 0, -43996, 3537314]$ |
\(y^2=x^3+x^2-43996x+3537314\) |
187200.hz3 |
187200ml1 |
187200.hz |
187200ml |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 3^{7} \cdot 5^{7} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$14.91770545$ |
$1$ |
|
$3$ |
$294912$ |
$1.324654$ |
$30488290624/195$ |
$[0, 0, 0, -58575, 5456500]$ |
\(y^2=x^3-58575x+5456500\) |
187200.ic3 |
187200mn1 |
187200.ic |
187200mn |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 3^{7} \cdot 5^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$294912$ |
$1.324654$ |
$30488290624/195$ |
$[0, 0, 0, -58575, -5456500]$ |
\(y^2=x^3-58575x-5456500\) |
243360.bj1 |
243360bj2 |
243360.bj |
243360bj |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{12} \cdot 3^{7} \cdot 5 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2.141564135$ |
$1$ |
|
$3$ |
$2064384$ |
$2.148983$ |
$30488290624/195$ |
$[0, 0, 0, -1583868, 767227552]$ |
\(y^2=x^3-1583868x+767227552\) |
243360.bk1 |
243360bk4 |
243360.bk |
243360bk |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{12} \cdot 3^{7} \cdot 5 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$2064384$ |
$2.148983$ |
$30488290624/195$ |
$[0, 0, 0, -1583868, -767227552]$ |
\(y^2=x^3-1583868x-767227552\) |
305760.da1 |
305760da2 |
305760.da |
305760da |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3.210580390$ |
$1$ |
|
$3$ |
$589824$ |
$1.290157$ |
$30488290624/195$ |
$[0, -1, 0, -51025, 4453345]$ |
\(y^2=x^3-x^2-51025x+4453345\) |
305760.gs1 |
305760gs4 |
305760.gs |
305760gs |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 7^{6} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$9.056005388$ |
$4$ |
$2$ |
$1$ |
$589824$ |
$1.290157$ |
$30488290624/195$ |
$[0, 1, 0, -51025, -4453345]$ |
\(y^2=x^3+x^2-51025x-4453345\) |
405600.ca1 |
405600ca4 |
405600.ca |
405600ca |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{12} \cdot 3 \cdot 5^{7} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$6193152$ |
$2.404396$ |
$30488290624/195$ |
$[0, -1, 0, -4399633, -3550512863]$ |
\(y^2=x^3-x^2-4399633x-3550512863\) |
405600.fg1 |
405600fg2 |
405600.fg |
405600fg |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( 2^{12} \cdot 3 \cdot 5^{7} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$6193152$ |
$2.404396$ |
$30488290624/195$ |
$[0, 1, 0, -4399633, 3550512863]$ |
\(y^2=x^3+x^2-4399633x+3550512863\) |
486720.mq3 |
486720mq1 |
486720.mq |
486720mq |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{6} \cdot 3^{7} \cdot 5 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$9.148697619$ |
$4$ |
$2$ |
$1$ |
$2064384$ |
$1.802410$ |
$30488290624/195$ |
$[0, 0, 0, -395967, -95903444]$ |
\(y^2=x^3-395967x-95903444\) |
486720.mt3 |
486720mt1 |
486720.mt |
486720mt |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( 2^{6} \cdot 3^{7} \cdot 5 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8.645341221$ |
$1$ |
|
$1$ |
$2064384$ |
$1.802410$ |
$30488290624/195$ |
$[0, 0, 0, -395967, 95903444]$ |
\(y^2=x^3-395967x+95903444\) |