| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 910.d2 |
910b1 |
910.d |
910b |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2 \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2184$ |
$16$ |
$0$ |
$1.396964348$ |
$1$ |
|
$4$ |
$144$ |
$-0.190445$ |
$30080231/768950$ |
$0.87009$ |
$3.07988$ |
$[1, 0, 1, 6, 42]$ |
\(y^2+xy+y=x^3+6x+42\) |
3.8.0-3.a.1.2, 728.2.0.?, 2184.16.0.? |
$[(6, 14)]$ |
$1$ |
| 4550.s2 |
4550o1 |
4550.s |
4550o |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 5^{8} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.614274$ |
$30080231/768950$ |
$0.87009$ |
$3.63786$ |
$[1, 1, 1, 162, 5281]$ |
\(y^2+xy+y=x^3+x^2+162x+5281\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 10920.16.0.? |
$[ ]$ |
$1$ |
| 6370.c2 |
6370g1 |
6370.c |
6370g |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.583117002$ |
$1$ |
|
$4$ |
$6912$ |
$0.782511$ |
$30080231/768950$ |
$0.87009$ |
$3.72859$ |
$[1, 1, 0, 318, -14174]$ |
\(y^2+xy=x^3+x^2+318x-14174\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(27, 109)]$ |
$1$ |
| 7280.f2 |
7280m1 |
7280.f |
7280m |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{13} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.360154283$ |
$1$ |
|
$6$ |
$3456$ |
$0.502703$ |
$30080231/768950$ |
$0.87009$ |
$3.29503$ |
$[0, -1, 0, 104, -2704]$ |
\(y^2=x^3-x^2+104x-2704\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 728.2.0.?, 2184.16.0.? |
$[(26, 130)]$ |
$1$ |
| 8190.by2 |
8190bx1 |
8190.by |
8190bx |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4320$ |
$0.358861$ |
$30080231/768950$ |
$0.87009$ |
$3.06040$ |
$[1, -1, 1, 58, -1141]$ |
\(y^2+xy+y=x^3-x^2+58x-1141\) |
3.8.0-3.a.1.1, 728.2.0.?, 2184.16.0.? |
$[ ]$ |
$1$ |
| 11830.y2 |
11830w1 |
11830.y |
11830w |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1.750540472$ |
$1$ |
|
$0$ |
$24192$ |
$1.092030$ |
$30080231/768950$ |
$0.87009$ |
$3.87852$ |
$[1, 0, 0, 1095, 91727]$ |
\(y^2+xy=x^3+1095x+91727\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 168.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(-491/4, 11967/4)]$ |
$1$ |
| 29120.v2 |
29120v1 |
29120.v |
29120v |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.771060968$ |
$1$ |
|
$4$ |
$27648$ |
$0.849277$ |
$30080231/768950$ |
$0.87009$ |
$3.25525$ |
$[0, -1, 0, 415, 21217]$ |
\(y^2=x^3-x^2+415x+21217\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 546.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(9, 160)]$ |
$1$ |
| 29120.bv2 |
29120ca1 |
29120.bv |
29120ca |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1.552145130$ |
$1$ |
|
$4$ |
$27648$ |
$0.849277$ |
$30080231/768950$ |
$0.87009$ |
$3.25525$ |
$[0, 1, 0, 415, -21217]$ |
\(y^2=x^3+x^2+415x-21217\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 728.2.0.?, 1092.8.0.?, 2184.16.0.? |
$[(23, 32)]$ |
$1$ |
| 31850.cf2 |
31850by1 |
31850.cf |
31850by |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 5^{8} \cdot 7^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$165888$ |
$1.587229$ |
$30080231/768950$ |
$0.87009$ |
$4.08116$ |
$[1, 0, 0, 7937, -1787633]$ |
\(y^2+xy=x^3+7937x-1787633\) |
3.4.0.a.1, 105.8.0.?, 728.2.0.?, 1560.8.0.?, 2184.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 36400.cf2 |
36400br1 |
36400.cf |
36400br |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{13} \cdot 5^{8} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$2.967196994$ |
$1$ |
|
$2$ |
$82944$ |
$1.307421$ |
$30080231/768950$ |
$0.87009$ |
$3.70956$ |
$[0, 1, 0, 2592, -332812]$ |
\(y^2=x^3+x^2+2592x-332812\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 10920.16.0.? |
$[(418, 8600)]$ |
$1$ |
| 40950.bd2 |
40950v1 |
40950.bd |
40950v |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$1.163580$ |
$30080231/768950$ |
$0.87009$ |
$3.50589$ |
$[1, -1, 0, 1458, -141134]$ |
\(y^2+xy=x^3-x^2+1458x-141134\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 728.2.0.?, 2184.8.0.?, 10920.16.0.? |
$[ ]$ |
$1$ |
| 50960.bq2 |
50960bo1 |
50960.bq |
50960bo |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$165888$ |
$1.475658$ |
$30080231/768950$ |
$0.87009$ |
$3.78066$ |
$[0, 1, 0, 5080, 917300]$ |
\(y^2=x^3+x^2+5080x+917300\) |
3.4.0.a.1, 84.8.0.?, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[ ]$ |
$1$ |
| 57330.dz2 |
57330dz1 |
57330.dz |
57330dz |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$1.331816$ |
$30080231/768950$ |
$0.87009$ |
$3.58248$ |
$[1, -1, 1, 2857, 385557]$ |
\(y^2+xy+y=x^3-x^2+2857x+385557\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[ ]$ |
$1$ |
| 59150.o2 |
59150l1 |
59150.o |
59150l |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2 \cdot 5^{8} \cdot 7 \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$580608$ |
$1.896749$ |
$30080231/768950$ |
$0.87009$ |
$4.18926$ |
$[1, 1, 0, 27375, 11465875]$ |
\(y^2+xy=x^3+x^2+27375x+11465875\) |
3.4.0.a.1, 195.8.0.?, 728.2.0.?, 840.8.0.?, 2184.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 65520.cf2 |
65520dx1 |
65520.cf |
65520dx |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.446058432$ |
$1$ |
|
$4$ |
$103680$ |
$1.052010$ |
$30080231/768950$ |
$0.87009$ |
$3.23658$ |
$[0, 0, 0, 933, 72074]$ |
\(y^2=x^3+933x+72074\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 728.2.0.?, 2184.16.0.? |
$[(53, 520)]$ |
$1$ |
| 82810.bw2 |
82810by1 |
82810.bw |
82810by |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7^{7} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$6.886643423$ |
$1$ |
|
$0$ |
$1161216$ |
$2.064983$ |
$30080231/768950$ |
$0.87009$ |
$4.24307$ |
$[1, 1, 1, 53654, -31408707]$ |
\(y^2+xy+y=x^3+x^2+53654x-31408707\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 273.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(123079/18, 37561643/18)]$ |
$1$ |
| 94640.bd2 |
94640cy1 |
94640.bd |
94640cy |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 5^{2} \cdot 7 \cdot 13^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1.652696318$ |
$1$ |
|
$10$ |
$580608$ |
$1.785177$ |
$30080231/768950$ |
$0.87009$ |
$3.90057$ |
$[0, -1, 0, 17520, -5870528]$ |
\(y^2=x^3-x^2+17520x-5870528\) |
3.4.0.a.1, 156.8.0.?, 168.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(672, 17576), (2869, 153790)]$ |
$1$ |
| 106470.h2 |
106470bd1 |
106470.h |
106470bd |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2 \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$725760$ |
$1.641336$ |
$30080231/768950$ |
$0.87009$ |
$3.71176$ |
$[1, -1, 0, 9855, -2476629]$ |
\(y^2+xy=x^3-x^2+9855x-2476629\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 168.8.0.?, 728.2.0.?, 2184.16.0.? |
$[ ]$ |
$1$ |
| 110110.cl2 |
110110bo1 |
110110.cl |
110110bo |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( - 2 \cdot 5^{2} \cdot 7 \cdot 11^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$24024$ |
$16$ |
$0$ |
$12.88872248$ |
$1$ |
|
$0$ |
$194400$ |
$1.008503$ |
$30080231/768950$ |
$0.87009$ |
$3.04688$ |
$[1, 0, 0, 784, -55450]$ |
\(y^2+xy=x^3+784x-55450\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 24024.16.0.? |
$[(747083/74, 625193319/74)]$ |
$1$ |
| 145600.cy2 |
145600bc1 |
145600.cy |
145600bc |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 5^{8} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$663552$ |
$1.653996$ |
$30080231/768950$ |
$0.87009$ |
$3.62682$ |
$[0, -1, 0, 10367, -2672863]$ |
\(y^2=x^3-x^2+10367x-2672863\) |
3.4.0.a.1, 120.8.0.?, 728.2.0.?, 2184.8.0.?, 5460.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 145600.fj2 |
145600gz1 |
145600.fj |
145600gz |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 5^{8} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$663552$ |
$1.653996$ |
$30080231/768950$ |
$0.87009$ |
$3.62682$ |
$[0, 1, 0, 10367, 2672863]$ |
\(y^2=x^3+x^2+10367x+2672863\) |
3.4.0.a.1, 120.8.0.?, 728.2.0.?, 2184.8.0.?, 2730.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 203840.bt2 |
203840bb1 |
203840.bt |
203840bb |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.773230390$ |
$1$ |
|
$14$ |
$1327104$ |
$1.822231$ |
$30080231/768950$ |
$0.87009$ |
$3.69214$ |
$[0, -1, 0, 20319, 7318081]$ |
\(y^2=x^3-x^2+20319x+7318081\) |
3.4.0.a.1, 156.8.0.?, 168.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(733, 20384), (-99, 2080)]$ |
$1$ |
| 203840.ee2 |
203840fh1 |
203840.ee |
203840fh |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$0.540390062$ |
$1$ |
|
$4$ |
$1327104$ |
$1.822231$ |
$30080231/768950$ |
$0.87009$ |
$3.69214$ |
$[0, 1, 0, 20319, -7318081]$ |
\(y^2=x^3+x^2+20319x-7318081\) |
3.4.0.a.1, 78.8.0.?, 168.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(2179, 101920)]$ |
$1$ |
| 254800.cq2 |
254800cq1 |
254800.cq |
254800cq |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 5^{8} \cdot 7^{7} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$0.700424385$ |
$1$ |
|
$18$ |
$3981312$ |
$2.280376$ |
$30080231/768950$ |
$0.87009$ |
$4.06760$ |
$[0, -1, 0, 126992, 114408512]$ |
\(y^2=x^3-x^2+126992x+114408512\) |
3.4.0.a.1, 420.8.0.?, 728.2.0.?, 1560.8.0.?, 2184.8.0.?, $\ldots$ |
$[(922, 31850), (-352, 5096)]$ |
$1$ |
| 262080.cq2 |
262080cq1 |
262080.cq |
262080cq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$4.111972117$ |
$1$ |
|
$2$ |
$829440$ |
$1.398582$ |
$30080231/768950$ |
$0.87009$ |
$3.21029$ |
$[0, 0, 0, 3732, 576592]$ |
\(y^2=x^3+3732x+576592\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 728.2.0.?, 1092.8.0.?, 2184.16.0.? |
$[(21, 815)]$ |
$1$ |
| 262080.eo2 |
262080eo1 |
262080.eo |
262080eo |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$5.636015985$ |
$1$ |
|
$0$ |
$829440$ |
$1.398582$ |
$30080231/768950$ |
$0.87009$ |
$3.21029$ |
$[0, 0, 0, 3732, -576592]$ |
\(y^2=x^3+3732x-576592\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 546.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(676/3, 9640/3)]$ |
$1$ |
| 262990.g2 |
262990g1 |
262990.g |
262990g |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7 \cdot 13^{3} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$37128$ |
$16$ |
$0$ |
$0.834064747$ |
$1$ |
|
$4$ |
$663552$ |
$1.226162$ |
$30080231/768950$ |
$0.87009$ |
$3.04361$ |
$[1, 1, 0, 1873, 205699]$ |
\(y^2+xy=x^3+x^2+1873x+205699\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 37128.16.0.? |
$[(443, 9171)]$ |
$1$ |
| 286650.gw2 |
286650gw1 |
286650.gw |
286650gw |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2 \cdot 3^{6} \cdot 5^{8} \cdot 7^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.136536$ |
$30080231/768950$ |
$0.87009$ |
$3.89211$ |
$[1, -1, 0, 71433, 48266091]$ |
\(y^2+xy=x^3-x^2+71433x+48266091\) |
3.4.0.a.1, 105.8.0.?, 728.2.0.?, 1560.8.0.?, 2184.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 327600.il2 |
327600il1 |
327600.il |
327600il |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{8} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$1.856728$ |
$30080231/768950$ |
$0.87009$ |
$3.58679$ |
$[0, 0, 0, 23325, 9009250]$ |
\(y^2=x^3+23325x+9009250\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 728.2.0.?, 2184.8.0.?, 10920.16.0.? |
$[ ]$ |
$1$ |
| 328510.be2 |
328510be1 |
328510.be |
328510be |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7 \cdot 13^{3} \cdot 19^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$41496$ |
$16$ |
$0$ |
$13.45602925$ |
$1$ |
|
$0$ |
$1026432$ |
$1.281775$ |
$30080231/768950$ |
$0.87009$ |
$3.04285$ |
$[1, 1, 1, 2339, -285111]$ |
\(y^2+xy+y=x^3+x^2+2339x-285111\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 728.2.0.?, 2184.8.0.?, 41496.16.0.? |
$[(467/2, 9637/2), (2229/4, 102005/4)]$ |
$1$ |
| 378560.bt2 |
378560bt1 |
378560.bt |
378560bt |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{19} \cdot 5^{2} \cdot 7 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$2.285911937$ |
$1$ |
|
$2$ |
$4644864$ |
$2.131752$ |
$30080231/768950$ |
$0.87009$ |
$3.80337$ |
$[0, -1, 0, 70079, 46894145]$ |
\(y^2=x^3-x^2+70079x+46894145\) |
3.4.0.a.1, 42.8.0-3.a.1.2, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(-17, 6760)]$ |
$1$ |
| 378560.gm2 |
378560gm1 |
378560.gm |
378560gm |
$2$ |
$3$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{19} \cdot 5^{2} \cdot 7 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$7.917687333$ |
$1$ |
|
$0$ |
$4644864$ |
$2.131752$ |
$30080231/768950$ |
$0.87009$ |
$3.80337$ |
$[0, 1, 0, 70079, -46894145]$ |
\(y^2=x^3+x^2+70079x-46894145\) |
3.4.0.a.1, 84.8.0.?, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[(46842/11, 8248045/11)]$ |
$1$ |
| 414050.cs2 |
414050cs1 |
414050.cs |
414050cs |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 5^{8} \cdot 7^{7} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27869184$ |
$2.869705$ |
$30080231/768950$ |
$0.87009$ |
$4.46169$ |
$[1, 0, 1, 1341349, -3928771052]$ |
\(y^2+xy+y=x^3+1341349x-3928771052\) |
3.4.0.a.1, 120.8.0.?, 728.2.0.?, 1365.8.0.?, 2184.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 458640.bh2 |
458640bh1 |
458640.bh |
458640bh |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{13} \cdot 3^{6} \cdot 5^{2} \cdot 7^{7} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.024963$ |
$30080231/768950$ |
$0.87009$ |
$3.64908$ |
$[0, 0, 0, 45717, -24721382]$ |
\(y^2=x^3+45717x-24721382\) |
3.4.0.a.1, 84.8.0.?, 312.8.0.?, 728.2.0.?, 2184.16.0.? |
$[ ]$ |
$1$ |
| 473200.fc2 |
473200fc1 |
473200.fc |
473200fc |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{13} \cdot 5^{8} \cdot 7 \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13934592$ |
$2.589897$ |
$30080231/768950$ |
$0.87009$ |
$4.15915$ |
$[0, 1, 0, 437992, -732940012]$ |
\(y^2=x^3+x^2+437992x-732940012\) |
3.4.0.a.1, 728.2.0.?, 780.8.0.?, 840.8.0.?, 2184.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 481390.y2 |
481390y1 |
481390.y |
481390y |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 23^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7 \cdot 13^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$50232$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1796256$ |
$1.377302$ |
$30080231/768950$ |
$0.87009$ |
$3.04160$ |
$[1, 0, 1, 3427, -507194]$ |
\(y^2+xy+y=x^3+3427x-507194\) |
3.4.0.a.1, 69.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 50232.16.0.? |
$[ ]$ |
$1$ |