Learn more

Refine search


Results (36 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
910.d2 910.d \( 2 \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/3\Z$ $1.396964348$ $[1, 0, 1, 6, 42]$ \(y^2+xy+y=x^3+6x+42\) 3.8.0-3.a.1.2, 728.2.0.?, 2184.16.0.? $[(6, 14)]$
4550.s2 4550.s \( 2 \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 162, 5281]$ \(y^2+xy+y=x^3+x^2+162x+5281\) 3.4.0.a.1, 15.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 10920.16.0.? $[ ]$
6370.c2 6370.c \( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.583117002$ $[1, 1, 0, 318, -14174]$ \(y^2+xy=x^3+x^2+318x-14174\) 3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 728.2.0.?, 2184.16.0.? $[(27, 109)]$
7280.f2 7280.f \( 2^{4} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.360154283$ $[0, -1, 0, 104, -2704]$ \(y^2=x^3-x^2+104x-2704\) 3.4.0.a.1, 12.8.0-3.a.1.1, 728.2.0.?, 2184.16.0.? $[(26, 130)]$
8190.by2 8190.by \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 58, -1141]$ \(y^2+xy+y=x^3-x^2+58x-1141\) 3.8.0-3.a.1.1, 728.2.0.?, 2184.16.0.? $[ ]$
11830.y2 11830.y \( 2 \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.750540472$ $[1, 0, 0, 1095, 91727]$ \(y^2+xy=x^3+1095x+91727\) 3.4.0.a.1, 39.8.0-3.a.1.1, 168.8.0.?, 728.2.0.?, 2184.16.0.? $[(-491/4, 11967/4)]$
29120.v2 29120.v \( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.771060968$ $[0, -1, 0, 415, 21217]$ \(y^2=x^3-x^2+415x+21217\) 3.4.0.a.1, 24.8.0-3.a.1.2, 546.8.0.?, 728.2.0.?, 2184.16.0.? $[(9, 160)]$
29120.bv2 29120.bv \( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.552145130$ $[0, 1, 0, 415, -21217]$ \(y^2=x^3+x^2+415x-21217\) 3.4.0.a.1, 24.8.0-3.a.1.4, 728.2.0.?, 1092.8.0.?, 2184.16.0.? $[(23, 32)]$
31850.cf2 31850.cf \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 7937, -1787633]$ \(y^2+xy=x^3+7937x-1787633\) 3.4.0.a.1, 105.8.0.?, 728.2.0.?, 1560.8.0.?, 2184.8.0.?, $\ldots$ $[ ]$
36400.cf2 36400.cf \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.967196994$ $[0, 1, 0, 2592, -332812]$ \(y^2=x^3+x^2+2592x-332812\) 3.4.0.a.1, 60.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 10920.16.0.? $[(418, 8600)]$
40950.bd2 40950.bd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1458, -141134]$ \(y^2+xy=x^3-x^2+1458x-141134\) 3.4.0.a.1, 15.8.0-3.a.1.1, 728.2.0.?, 2184.8.0.?, 10920.16.0.? $[ ]$
50960.bq2 50960.bq \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 5080, 917300]$ \(y^2=x^3+x^2+5080x+917300\) 3.4.0.a.1, 84.8.0.?, 312.8.0.?, 728.2.0.?, 2184.16.0.? $[ ]$
57330.dz2 57330.dz \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 2857, 385557]$ \(y^2+xy+y=x^3-x^2+2857x+385557\) 3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 728.2.0.?, 2184.16.0.? $[ ]$
59150.o2 59150.o \( 2 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 27375, 11465875]$ \(y^2+xy=x^3+x^2+27375x+11465875\) 3.4.0.a.1, 195.8.0.?, 728.2.0.?, 840.8.0.?, 2184.8.0.?, $\ldots$ $[ ]$
65520.cf2 65520.cf \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.446058432$ $[0, 0, 0, 933, 72074]$ \(y^2=x^3+933x+72074\) 3.4.0.a.1, 12.8.0-3.a.1.2, 728.2.0.?, 2184.16.0.? $[(53, 520)]$
82810.bw2 82810.bw \( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.886643423$ $[1, 1, 1, 53654, -31408707]$ \(y^2+xy+y=x^3+x^2+53654x-31408707\) 3.4.0.a.1, 24.8.0-3.a.1.6, 273.8.0.?, 728.2.0.?, 2184.16.0.? $[(123079/18, 37561643/18)]$
94640.bd2 94640.bd \( 2^{4} \cdot 5 \cdot 7 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.652696318$ $[0, -1, 0, 17520, -5870528]$ \(y^2=x^3-x^2+17520x-5870528\) 3.4.0.a.1, 156.8.0.?, 168.8.0.?, 728.2.0.?, 2184.16.0.? $[(672, 17576), (2869, 153790)]$
106470.h2 106470.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 9855, -2476629]$ \(y^2+xy=x^3-x^2+9855x-2476629\) 3.4.0.a.1, 39.8.0-3.a.1.2, 168.8.0.?, 728.2.0.?, 2184.16.0.? $[ ]$
110110.cl2 110110.cl \( 2 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $12.88872248$ $[1, 0, 0, 784, -55450]$ \(y^2+xy=x^3+784x-55450\) 3.4.0.a.1, 33.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 24024.16.0.? $[(747083/74, 625193319/74)]$
145600.cy2 145600.cy \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 10367, -2672863]$ \(y^2=x^3-x^2+10367x-2672863\) 3.4.0.a.1, 120.8.0.?, 728.2.0.?, 2184.8.0.?, 5460.8.0.?, $\ldots$ $[ ]$
145600.fj2 145600.fj \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 10367, 2672863]$ \(y^2=x^3+x^2+10367x+2672863\) 3.4.0.a.1, 120.8.0.?, 728.2.0.?, 2184.8.0.?, 2730.8.0.?, $\ldots$ $[ ]$
203840.bt2 203840.bt \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.773230390$ $[0, -1, 0, 20319, 7318081]$ \(y^2=x^3-x^2+20319x+7318081\) 3.4.0.a.1, 156.8.0.?, 168.8.0.?, 728.2.0.?, 2184.16.0.? $[(733, 20384), (-99, 2080)]$
203840.ee2 203840.ee \( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.540390062$ $[0, 1, 0, 20319, -7318081]$ \(y^2=x^3+x^2+20319x-7318081\) 3.4.0.a.1, 78.8.0.?, 168.8.0.?, 728.2.0.?, 2184.16.0.? $[(2179, 101920)]$
254800.cq2 254800.cq \( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.700424385$ $[0, -1, 0, 126992, 114408512]$ \(y^2=x^3-x^2+126992x+114408512\) 3.4.0.a.1, 420.8.0.?, 728.2.0.?, 1560.8.0.?, 2184.8.0.?, $\ldots$ $[(922, 31850), (-352, 5096)]$
262080.cq2 262080.cq \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $4.111972117$ $[0, 0, 0, 3732, 576592]$ \(y^2=x^3+3732x+576592\) 3.4.0.a.1, 24.8.0-3.a.1.3, 728.2.0.?, 1092.8.0.?, 2184.16.0.? $[(21, 815)]$
262080.eo2 262080.eo \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) $1$ $\mathsf{trivial}$ $5.636015985$ $[0, 0, 0, 3732, -576592]$ \(y^2=x^3+3732x-576592\) 3.4.0.a.1, 24.8.0-3.a.1.1, 546.8.0.?, 728.2.0.?, 2184.16.0.? $[(676/3, 9640/3)]$
262990.g2 262990.g \( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.834064747$ $[1, 1, 0, 1873, 205699]$ \(y^2+xy=x^3+x^2+1873x+205699\) 3.4.0.a.1, 51.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 37128.16.0.? $[(443, 9171)]$
286650.gw2 286650.gw \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 71433, 48266091]$ \(y^2+xy=x^3-x^2+71433x+48266091\) 3.4.0.a.1, 105.8.0.?, 728.2.0.?, 1560.8.0.?, 2184.8.0.?, $\ldots$ $[ ]$
327600.il2 327600.il \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 23325, 9009250]$ \(y^2=x^3+23325x+9009250\) 3.4.0.a.1, 60.8.0-3.a.1.1, 728.2.0.?, 2184.8.0.?, 10920.16.0.? $[ ]$
328510.be2 328510.be \( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $13.45602925$ $[1, 1, 1, 2339, -285111]$ \(y^2+xy+y=x^3+x^2+2339x-285111\) 3.4.0.a.1, 57.8.0-3.a.1.1, 728.2.0.?, 2184.8.0.?, 41496.16.0.? $[(467/2, 9637/2), (2229/4, 102005/4)]$
378560.bt2 378560.bt \( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.285911937$ $[0, -1, 0, 70079, 46894145]$ \(y^2=x^3-x^2+70079x+46894145\) 3.4.0.a.1, 42.8.0-3.a.1.2, 312.8.0.?, 728.2.0.?, 2184.16.0.? $[(-17, 6760)]$
378560.gm2 378560.gm \( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.917687333$ $[0, 1, 0, 70079, -46894145]$ \(y^2=x^3+x^2+70079x-46894145\) 3.4.0.a.1, 84.8.0.?, 312.8.0.?, 728.2.0.?, 2184.16.0.? $[(46842/11, 8248045/11)]$
414050.cs2 414050.cs \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1341349, -3928771052]$ \(y^2+xy+y=x^3+1341349x-3928771052\) 3.4.0.a.1, 120.8.0.?, 728.2.0.?, 1365.8.0.?, 2184.8.0.?, $\ldots$ $[ ]$
458640.bh2 458640.bh \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 45717, -24721382]$ \(y^2=x^3+45717x-24721382\) 3.4.0.a.1, 84.8.0.?, 312.8.0.?, 728.2.0.?, 2184.16.0.? $[ ]$
473200.fc2 473200.fc \( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 437992, -732940012]$ \(y^2=x^3+x^2+437992x-732940012\) 3.4.0.a.1, 728.2.0.?, 780.8.0.?, 840.8.0.?, 2184.8.0.?, $\ldots$ $[ ]$
481390.y2 481390.y \( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 3427, -507194]$ \(y^2+xy+y=x^3+3427x-507194\) 3.4.0.a.1, 69.8.0-3.a.1.2, 728.2.0.?, 2184.8.0.?, 50232.16.0.? $[ ]$
  displayed columns for results