Learn more

Refine search


Results (26 matches)

  Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
2760.c2 2760.c \( 2^{3} \cdot 3 \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 64, 636]$ \(y^2=x^3-x^2+64x+636\)
5520.s2 5520.s \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 64, -636]$ \(y^2=x^3+x^2+64x-636\)
8280.w2 8280.w \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 573, -17746]$ \(y^2=x^3+573x-17746\)
13800.m2 13800.m \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.027801550$ $[0, 1, 0, 1592, 82688]$ \(y^2=x^3+x^2+1592x+82688\)
16560.bb2 16560.bb \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 23 \) $2$ $\Z/2\Z$ $0.367184150$ $[0, 0, 0, 573, 17746]$ \(y^2=x^3+573x+17746\)
22080.t2 22080.t \( 2^{6} \cdot 3 \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $0.920659784$ $[0, -1, 0, 255, -5343]$ \(y^2=x^3-x^2+255x-5343\)
22080.dd2 22080.dd \( 2^{6} \cdot 3 \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 255, 5343]$ \(y^2=x^3+x^2+255x+5343\)
27600.bs2 27600.bs \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 1592, -82688]$ \(y^2=x^3-x^2+1592x-82688\)
41400.d2 41400.d \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.253961851$ $[0, 0, 0, 14325, -2218250]$ \(y^2=x^3+14325x-2218250\)
63480.g2 63480.g \( 2^{3} \cdot 3 \cdot 5 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.441513651$ $[0, -1, 0, 33680, -8008100]$ \(y^2=x^3-x^2+33680x-8008100\)
66240.k2 66240.k \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2292, 141968]$ \(y^2=x^3+2292x+141968\)
66240.cx2 66240.cx \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2292, -141968]$ \(y^2=x^3+2292x-141968\)
82800.fm2 82800.fm \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 14325, 2218250]$ \(y^2=x^3+14325x+2218250\)
110400.l2 110400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.656637285$ $[0, -1, 0, 6367, 655137]$ \(y^2=x^3-x^2+6367x+655137\)
110400.ji2 110400.ji \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 6367, -655137]$ \(y^2=x^3+x^2+6367x-655137\)
126960.dg2 126960.dg \( 2^{4} \cdot 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 33680, 8008100]$ \(y^2=x^3+x^2+33680x+8008100\)
135240.cx2 135240.cx \( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $4.534183703$ $[0, 1, 0, 3120, -224400]$ \(y^2=x^3+x^2+3120x-224400\)
190440.b2 190440.b \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 303117, 215915582]$ \(y^2=x^3+303117x+215915582\)
270480.et2 270480.et \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.570333154$ $[0, -1, 0, 3120, 224400]$ \(y^2=x^3-x^2+3120x+224400\)
317400.cz2 317400.cz \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 841992, -999328512]$ \(y^2=x^3+x^2+841992x-999328512\)
331200.r2 331200.r \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.576721223$ $[0, 0, 0, 57300, -17746000]$ \(y^2=x^3+57300x-17746000\)
331200.qj2 331200.qj \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.473268681$ $[0, 0, 0, 57300, 17746000]$ \(y^2=x^3+57300x+17746000\)
333960.e2 333960.e \( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 7704, -877380]$ \(y^2=x^3-x^2+7704x-877380\)
380880.dj2 380880.dj \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.523493601$ $[0, 0, 0, 303117, -215915582]$ \(y^2=x^3+303117x-215915582\)
405720.do2 405720.do \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 28077, 6086878]$ \(y^2=x^3+28077x+6086878\)
466440.q2 466440.q \( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 10760, 1440412]$ \(y^2=x^3-x^2+10760x+1440412\)
  Download to