Learn more

Refine search


Results (27 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
2310.b2 2310.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -280338, -3362508]$ \(y^2+xy=x^3+x^2-280338x-3362508\)
6930.bc2 6930.bc \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -2523047, 88264671]$ \(y^2+xy+y=x^3-x^2-2523047x+88264671\)
11550.cr2 11550.cr \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.208557746$ $[1, 0, 0, -7008463, -406296583]$ \(y^2+xy=x^3-7008463x-406296583\)
16170.bc2 16170.bc \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.933736480$ $[1, 0, 1, -13736588, 1112130506]$ \(y^2+xy+y=x^3-13736588x+1112130506\)
18480.cf2 18480.cf \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -4485416, 206229684]$ \(y^2=x^3+x^2-4485416x+206229684\)
25410.bo2 25410.bo \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -33920961, 4305893439]$ \(y^2+xy+y=x^3+x^2-33920961x+4305893439\)
34650.ba2 34650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.061154608$ $[1, -1, 0, -63076167, 10970007741]$ \(y^2+xy=x^3-x^2-63076167x+10970007741\)
48510.cb2 48510.cb \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -123629288, -30027523669]$ \(y^2+xy+y=x^3-x^2-123629288x-30027523669\)
55440.ey2 55440.ey \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -40368747, -5608570214]$ \(y^2=x^3-40368747x-5608570214\)
73920.dt2 73920.dt \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.961982731$ $[0, -1, 0, -17941665, 1667779137]$ \(y^2=x^3-x^2-17941665x+1667779137\)
73920.gk2 73920.gk \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.370520506$ $[0, 1, 0, -17941665, -1667779137]$ \(y^2=x^3+x^2-17941665x-1667779137\)
76230.cb2 76230.cb \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.29721683$ $[1, -1, 0, -305288649, -116564411507]$ \(y^2+xy=x^3-x^2-305288649x-116564411507\)
80850.fj2 80850.fj \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -343414688, 139016313281]$ \(y^2+xy+y=x^3+x^2-343414688x+139016313281\)
92400.b2 92400.b \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -112135408, 26002981312]$ \(y^2=x^3-x^2-112135408x+26002981312\)
127050.do2 127050.do \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.849123182$ $[1, 0, 1, -848024026, 539932727948]$ \(y^2+xy+y=x^3-848024026x+539932727948\)
129360.cj2 129360.cj \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -219785400, -71176352400]$ \(y^2=x^3-x^2-219785400x-71176352400\)
177870.jc2 177870.jc \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -1662127090, -1481907830908]$ \(y^2+xy=x^3-1662127090x-1481907830908\)
203280.dt2 203280.dt \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -542735376, -276662650860]$ \(y^2=x^3+x^2-542735376x-276662650860\)
221760.bu2 221760.bu \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.396667190$ $[0, 0, 0, -161474988, 44868561712]$ \(y^2=x^3-161474988x+44868561712\)
221760.di2 221760.di \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -161474988, -44868561712]$ \(y^2=x^3-161474988x-44868561712\)
242550.dp2 242550.dp \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $16.92587364$ $[1, -1, 0, -3090732192, -3756531190784]$ \(y^2+xy=x^3-x^2-3090732192x-3756531190784\)
277200.dv2 277200.dv \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1009218675, -701071276750]$ \(y^2=x^3-1009218675x-701071276750\)
369600.iz2 369600.iz \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -448541633, -207575308863]$ \(y^2=x^3-x^2-448541633x-207575308863\)
369600.qr2 369600.qr \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -448541633, 207575308863]$ \(y^2=x^3+x^2-448541633x+207575308863\)
381150.ms2 381150.ms \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -7632216230, -14578183654603]$ \(y^2+xy+y=x^3-x^2-7632216230x-14578183654603\)
388080.ei2 388080.ei \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.300385675$ $[0, 0, 0, -1978068603, 1923739583402]$ \(y^2=x^3-1978068603x+1923739583402\)
390390.do2 390390.do \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -47377210, -7150544185]$ \(y^2+xy+y=x^3+x^2-47377210x-7150544185\)
  Download to