Learn more

Refine search


Results (50 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
405.c1 405.c \( 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $0.355512380$ $[0, 0, 1, -108, -412]$ \(y^2+y=x^3-108x-412\)
405.d2 405.d \( 3^{4} \cdot 5 \) $0$ $\Z/3\Z$ $1$ $[0, 0, 1, -12, 15]$ \(y^2+y=x^3-12x+15\)
2025.c1 2025.c \( 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.847662510$ $[0, 0, 1, -2700, -51469]$ \(y^2+y=x^3-2700x-51469\)
2025.d2 2025.d \( 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $0.349568353$ $[0, 0, 1, -300, 1906]$ \(y^2+y=x^3-300x+1906\)
6480.c1 6480.c \( 2^{4} \cdot 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1728, 26352]$ \(y^2=x^3-1728x+26352\)
6480.o2 6480.o \( 2^{4} \cdot 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $1.013791345$ $[0, 0, 0, -192, -976]$ \(y^2=x^3-192x-976\)
19845.g2 19845.g \( 3^{4} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -588, -5231]$ \(y^2+y=x^3-588x-5231\)
19845.h1 19845.h \( 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.854937504$ $[0, 0, 1, -5292, 141230]$ \(y^2+y=x^3-5292x+141230\)
25920.n2 25920.n \( 2^{6} \cdot 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -48, -122]$ \(y^2=x^3-48x-122\)
25920.bd2 25920.bd \( 2^{6} \cdot 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $2.012244869$ $[0, 0, 0, -48, 122]$ \(y^2=x^3-48x+122\)
25920.cb1 25920.cb \( 2^{6} \cdot 3^{4} \cdot 5 \) $1$ $\mathsf{trivial}$ $0.352327759$ $[0, 0, 0, -432, 3294]$ \(y^2=x^3-432x+3294\)
25920.cv1 25920.cv \( 2^{6} \cdot 3^{4} \cdot 5 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -432, -3294]$ \(y^2=x^3-432x-3294\)
32400.cn2 32400.cn \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4800, -122000]$ \(y^2=x^3-4800x-122000\)
32400.cw1 32400.cw \( 2^{4} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -43200, 3294000]$ \(y^2=x^3-43200x+3294000\)
49005.g1 49005.g \( 3^{4} \cdot 5 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -13068, 548039]$ \(y^2+y=x^3-13068x+548039\)
49005.i2 49005.i \( 3^{4} \cdot 5 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.015498181$ $[0, 0, 1, -1452, -20298]$ \(y^2+y=x^3-1452x-20298\)
68445.q2 68445.q \( 3^{4} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.819956913$ $[0, 0, 1, -2028, 33504]$ \(y^2+y=x^3-2028x+33504\)
68445.u1 68445.u \( 3^{4} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.238470154$ $[0, 0, 1, -18252, -904615]$ \(y^2+y=x^3-18252x-904615\)
99225.t1 99225.t \( 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.955508837$ $[0, 0, 1, -132300, 17653781]$ \(y^2+y=x^3-132300x+17653781\)
99225.x2 99225.x \( 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -14700, -653844]$ \(y^2+y=x^3-14700x-653844\)
117045.l2 117045.l \( 3^{4} \cdot 5 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.951454212$ $[0, 0, 1, -3468, 74923]$ \(y^2+y=x^3-3468x+74923\)
117045.o1 117045.o \( 3^{4} \cdot 5 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -31212, -2022928]$ \(y^2+y=x^3-31212x-2022928\)
129600.bz2 129600.bz \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.450102383$ $[0, 0, 0, -1200, 15250]$ \(y^2=x^3-1200x+15250\)
129600.cu1 129600.cu \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $1.320203753$ $[0, 0, 0, -10800, -411750]$ \(y^2=x^3-10800x-411750\)
129600.gm1 129600.gm \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -10800, 411750]$ \(y^2=x^3-10800x+411750\)
129600.hh2 129600.hh \( 2^{6} \cdot 3^{4} \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1200, -15250]$ \(y^2=x^3-1200x-15250\)
146205.g1 146205.g \( 3^{4} \cdot 5 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -38988, 2824193]$ \(y^2+y=x^3-38988x+2824193\)
146205.h2 146205.h \( 3^{4} \cdot 5 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.817285102$ $[0, 0, 1, -4332, -104600]$ \(y^2+y=x^3-4332x-104600\)
214245.j2 214245.j \( 3^{4} \cdot 5 \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $7.804842085$ $[0, 0, 1, -6348, -185547]$ \(y^2+y=x^3-6348x-185547\)
214245.q1 214245.q \( 3^{4} \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.669262912$ $[0, 0, 1, -57132, 5009762]$ \(y^2+y=x^3-57132x+5009762\)
245025.l1 245025.l \( 3^{4} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -326700, 68504906]$ \(y^2+y=x^3-326700x+68504906\)
245025.o2 245025.o \( 3^{4} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -36300, -2537219]$ \(y^2+y=x^3-36300x-2537219\)
317520.bc2 317520.bc \( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.103356894$ $[0, 0, 0, -9408, 334768]$ \(y^2=x^3-9408x+334768\)
317520.hu1 317520.hu \( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -84672, -9038736]$ \(y^2=x^3-84672x-9038736\)
340605.c1 340605.c \( 3^{4} \cdot 5 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $22.54144173$ $[0, 0, 1, -90828, -10042171]$ \(y^2+y=x^3-90828x-10042171\)
340605.d2 340605.d \( 3^{4} \cdot 5 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -10092, 371932]$ \(y^2+y=x^3-10092x+371932\)
342225.bp2 342225.bp \( 3^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.828212709$ $[0, 0, 1, -50700, 4188031]$ \(y^2+y=x^3-50700x+4188031\)
342225.bt1 342225.bt \( 3^{4} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.980832025$ $[0, 0, 1, -456300, -113076844]$ \(y^2+y=x^3-456300x-113076844\)
389205.k1 389205.k \( 3^{4} \cdot 5 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -103788, 12266444]$ \(y^2+y=x^3-103788x+12266444\)
389205.o2 389205.o \( 3^{4} \cdot 5 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $4.136530310$ $[0, 0, 1, -11532, -454313]$ \(y^2+y=x^3-11532x-454313\)
1270080.cs1 1270080.cs \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $10.80529396$ $[0, 0, 0, -21168, -1129842]$ \(y^2=x^3-21168x-1129842\)
1270080.ia1 1270080.ia \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $5.496684311$ $[0, 0, 0, -21168, 1129842]$ \(y^2=x^3-21168x+1129842\)
1270080.nv2 1270080.nv \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.488817477$ $[0, 0, 0, -2352, -41846]$ \(y^2=x^3-2352x-41846\)
1270080.tf2 1270080.tf \( 2^{6} \cdot 3^{4} \cdot 5 \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $3.283574571$ $[0, 0, 0, -2352, 41846]$ \(y^2=x^3-2352x+41846\)
1587600.et2 1587600.et \( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $7.847534580$ $[0, 0, 0, -235200, 41846000]$ \(y^2=x^3-235200x+41846000\)
1587600.qz1 1587600.qz \( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.569945071$ $[0, 0, 0, -2116800, -1129842000]$ \(y^2=x^3-2116800x-1129842000\)
6350400.rr1 6350400.rr \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.968103207$ $[0, 0, 0, -529200, -141230250]$ \(y^2=x^3-529200x-141230250\)
6350400.so2 6350400.so \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -58800, -5230750]$ \(y^2=x^3-58800x-5230750\)
6350400.bxt1 6350400.bxt \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -529200, 141230250]$ \(y^2=x^3-529200x+141230250\)
6350400.byq2 6350400.byq \( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.662715661$ $[0, 0, 0, -58800, 5230750]$ \(y^2=x^3-58800x+5230750\)
  Download to