Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
46410.ck5 |
46410cn3 |
46410.ck |
46410cn |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} \cdot 13^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.2 |
2Cs |
$371280$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$6$ |
$6291456$ |
$3.126213$ |
$229010110533436633465952161/132501160769452503210000$ |
$1.06314$ |
$5.64861$ |
$[1, 0, 0, -12746090, -254913900]$ |
\(y^2+xy=x^3-12746090x-254913900\) |
2.6.0.a.1, 4.48.0-4.b.1.1, 8.96.0-8.c.1.1, 120.192.1.?, 952.192.1.?, $\ldots$ |
$[]$ |
139230.j5 |
139230dy3 |
139230.j |
139230dy |
$8$ |
$16$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{4} \cdot 7^{4} \cdot 13^{8} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.45 |
2Cs |
$371280$ |
$768$ |
$13$ |
$2.945905019$ |
$1$ |
|
$6$ |
$50331648$ |
$3.675518$ |
$229010110533436633465952161/132501160769452503210000$ |
$1.06314$ |
$5.68120$ |
$[1, -1, 0, -114714810, 6882675300]$ |
\(y^2+xy=x^3-x^2-114714810x+6882675300\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.c.1, 12.48.0-4.b.1.1, 24.96.0-8.c.1.1, $\ldots$ |
$[(-1263, 387609)]$ |
232050.bf5 |
232050bf4 |
232050.bf |
232050bf |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{10} \cdot 7^{4} \cdot 13^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.45 |
2Cs |
$371280$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$150994944$ |
$3.930931$ |
$229010110533436633465952161/132501160769452503210000$ |
$1.06314$ |
$5.69438$ |
$[1, 1, 0, -318652250, -31864237500]$ |
\(y^2+xy=x^3+x^2-318652250x-31864237500\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.c.1, 20.48.0-4.b.1.1, 24.96.0-8.c.1.7, $\ldots$ |
$[]$ |
324870.dd5 |
324870dd3 |
324870.dd |
324870dd |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{10} \cdot 13^{8} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.45 |
2Cs |
$371280$ |
$768$ |
$13$ |
$14.02145516$ |
$1$ |
|
$2$ |
$301989888$ |
$4.099167$ |
$229010110533436633465952161/132501160769452503210000$ |
$1.06314$ |
$5.70249$ |
$[1, 1, 1, -624558411, 86810909289]$ |
\(y^2+xy+y=x^3+x^2-624558411x+86810909289\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.c.1, 28.48.0-4.b.1.1, 56.96.0-8.c.1.1, $\ldots$ |
$[(343241133/23, 6350490075802/23)]$ |
371280.cy5 |
371280cy3 |
371280.cy |
371280cy |
$8$ |
$16$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{16} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} \cdot 13^{8} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.5 |
2Cs |
$371280$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$7$ |
$150994944$ |
$3.819359$ |
$229010110533436633465952161/132501160769452503210000$ |
$1.06314$ |
$5.38130$ |
$[0, -1, 0, -203937440, 16314489600]$ |
\(y^2=x^3-x^2-203937440x+16314489600\) |
2.6.0.a.1, 4.48.0-4.b.1.1, 8.96.0-8.c.1.10, 120.192.1.?, 952.192.1.?, $\ldots$ |
$[]$ |