Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1150.d1 |
1150b1 |
1150.d |
1150b |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$504$ |
$-0.124851$ |
$2109375/67712$ |
$1.22054$ |
$3.09023$ |
$[1, -1, 0, 8, -64]$ |
\(y^2+xy=x^3-x^2+8x-64\) |
8.2.0.a.1 |
$[]$ |
1150.e1 |
1150i1 |
1150.e |
1150i |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.096454741$ |
$1$ |
|
$12$ |
$2520$ |
$0.679868$ |
$2109375/67712$ |
$1.22054$ |
$4.46044$ |
$[1, -1, 1, 195, -7803]$ |
\(y^2+xy+y=x^3-x^2+195x-7803\) |
8.2.0.a.1 |
$[(69, 540)]$ |
9200.a1 |
9200x1 |
9200.a |
9200x |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 23 \) |
\( - 2^{19} \cdot 5^{2} \cdot 23^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.439425055$ |
$1$ |
|
$16$ |
$12096$ |
$0.568296$ |
$2109375/67712$ |
$1.22054$ |
$3.29750$ |
$[0, 0, 0, 125, 3970]$ |
\(y^2=x^3+125x+3970\) |
8.2.0.a.1 |
$[(1, 64), (129, 1472)]$ |
9200.bl1 |
9200bl1 |
9200.bl |
9200bl |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 23 \) |
\( - 2^{19} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60480$ |
$1.373014$ |
$2109375/67712$ |
$1.22054$ |
$4.35554$ |
$[0, 0, 0, 3125, 496250]$ |
\(y^2=x^3+3125x+496250\) |
8.2.0.a.1 |
$[]$ |
10350.b1 |
10350z1 |
10350.b |
10350z |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35280$ |
$1.229174$ |
$2109375/67712$ |
$1.22054$ |
$4.11334$ |
$[1, -1, 0, 1758, 208916]$ |
\(y^2+xy=x^3-x^2+1758x+208916\) |
8.2.0.a.1 |
$[]$ |
10350.bt1 |
10350bn1 |
10350.bt |
10350bn |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{2} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.437081736$ |
$1$ |
|
$4$ |
$7056$ |
$0.424455$ |
$2109375/67712$ |
$1.22054$ |
$3.06878$ |
$[1, -1, 1, 70, 1657]$ |
\(y^2+xy+y=x^3-x^2+70x+1657\) |
8.2.0.a.1 |
$[(5, 43)]$ |
26450.k1 |
26450f1 |
26450.k |
26450f |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{7} \cdot 5^{2} \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$266112$ |
$1.442896$ |
$2109375/67712$ |
$1.22054$ |
$3.98619$ |
$[1, -1, 0, 4133, 753701]$ |
\(y^2+xy=x^3-x^2+4133x+753701\) |
8.2.0.a.1 |
$[]$ |
26450.n1 |
26450be1 |
26450.n |
26450be |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{7} \cdot 5^{8} \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1330560$ |
$2.247616$ |
$2109375/67712$ |
$1.22054$ |
$4.93449$ |
$[1, -1, 1, 103320, 94315947]$ |
\(y^2+xy+y=x^3-x^2+103320x+94315947\) |
8.2.0.a.1 |
$[]$ |
36800.d1 |
36800bg1 |
36800.d |
36800bg |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$0.914869$ |
$2109375/67712$ |
$1.22054$ |
$3.25828$ |
$[0, 0, 0, 500, -31760]$ |
\(y^2=x^3+500x-31760\) |
8.2.0.a.1 |
$[]$ |
36800.f1 |
36800dt1 |
36800.f |
36800dt |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.719589$ |
$2109375/67712$ |
$1.22054$ |
$4.17679$ |
$[0, 0, 0, 12500, 3970000]$ |
\(y^2=x^3+12500x+3970000\) |
8.2.0.a.1 |
$[]$ |
36800.do1 |
36800bo1 |
36800.do |
36800bo |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.719589$ |
$2109375/67712$ |
$1.22054$ |
$4.17679$ |
$[0, 0, 0, 12500, -3970000]$ |
\(y^2=x^3+12500x-3970000\) |
8.2.0.a.1 |
$[]$ |
36800.dq1 |
36800ci1 |
36800.dq |
36800ci |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$0.914869$ |
$2109375/67712$ |
$1.22054$ |
$3.25828$ |
$[0, 0, 0, 500, 31760]$ |
\(y^2=x^3+500x+31760\) |
8.2.0.a.1 |
$[]$ |
56350.a1 |
56350v1 |
56350.a |
56350v |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 7^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.948688511$ |
$1$ |
|
$4$ |
$145152$ |
$0.848104$ |
$2109375/67712$ |
$1.22054$ |
$3.05813$ |
$[1, -1, 0, 383, 21181]$ |
\(y^2+xy=x^3-x^2+383x+21181\) |
8.2.0.a.1 |
$[(65, 531)]$ |
56350.cb1 |
56350ca1 |
56350.cb |
56350ca |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 7^{6} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$725760$ |
$1.652822$ |
$2109375/67712$ |
$1.22054$ |
$3.94087$ |
$[1, -1, 1, 9570, 2657197]$ |
\(y^2+xy+y=x^3-x^2+9570x+2657197\) |
8.2.0.a.1 |
$[]$ |
82800.q1 |
82800et1 |
82800.q |
82800et |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$169344$ |
$1.117601$ |
$2109375/67712$ |
$1.22054$ |
$3.23978$ |
$[0, 0, 0, 1125, -107190]$ |
\(y^2=x^3+1125x-107190\) |
8.2.0.a.1 |
$[]$ |
82800.fr1 |
82800fk1 |
82800.fr |
82800fk |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$846720$ |
$1.922321$ |
$2109375/67712$ |
$1.22054$ |
$4.09252$ |
$[0, 0, 0, 28125, -13398750]$ |
\(y^2=x^3+28125x-13398750\) |
8.2.0.a.1 |
$[]$ |
139150.a1 |
139150bt1 |
139150.a |
139150bt |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 11^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.145759794$ |
$1$ |
|
$4$ |
$3402000$ |
$1.878815$ |
$2109375/67712$ |
$1.22054$ |
$3.86906$ |
$[1, -1, 0, 23633, 10314541]$ |
\(y^2+xy=x^3-x^2+23633x+10314541\) |
8.2.0.a.1 |
$[(-181, 378)]$ |
139150.di1 |
139150bq1 |
139150.di |
139150bq |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 11^{6} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$680400$ |
$1.074097$ |
$2109375/67712$ |
$1.22054$ |
$3.05369$ |
$[1, -1, 1, 945, 82327]$ |
\(y^2+xy+y=x^3-x^2+945x+82327\) |
8.2.0.a.1 |
$[]$ |
194350.e1 |
194350cm1 |
194350.e |
194350cm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 13^{6} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4838400$ |
$1.962343$ |
$2109375/67712$ |
$1.22054$ |
$3.84521$ |
$[1, -1, 0, 33008, -17043584]$ |
\(y^2+xy=x^3-x^2+33008x-17043584\) |
8.2.0.a.1 |
$[]$ |
194350.eo1 |
194350cf1 |
194350.eo |
194350cf |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 13^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.917963890$ |
$1$ |
|
$0$ |
$967680$ |
$1.157623$ |
$2109375/67712$ |
$1.22054$ |
$3.05222$ |
$[1, -1, 1, 1320, -136613]$ |
\(y^2+xy+y=x^3-x^2+1320x-136613\) |
8.2.0.a.1 |
$[(415/3, 3251/3)]$ |
211600.g1 |
211600f1 |
211600.g |
211600f |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{19} \cdot 5^{2} \cdot 23^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.027448590$ |
$1$ |
|
$2$ |
$6386688$ |
$2.136044$ |
$2109375/67712$ |
$1.22054$ |
$3.98853$ |
$[0, 0, 0, 66125, -48302990]$ |
\(y^2=x^3+66125x-48302990\) |
8.2.0.a.1 |
$[(489, 10048)]$ |
211600.dv1 |
211600cn1 |
211600.dv |
211600cn |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{19} \cdot 5^{8} \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$31933440$ |
$2.940762$ |
$2109375/67712$ |
$1.22054$ |
$4.77602$ |
$[0, 0, 0, 1653125, -6037873750]$ |
\(y^2=x^3+1653125x-6037873750\) |
8.2.0.a.1 |
$[]$ |
238050.di1 |
238050di1 |
238050.di |
238050di |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{8} \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$18627840$ |
$2.796921$ |
$2109375/67712$ |
$1.22054$ |
$4.59116$ |
$[1, -1, 0, 929883, -2547460459]$ |
\(y^2+xy=x^3-x^2+929883x-2547460459\) |
8.2.0.a.1 |
$[]$ |
238050.dy1 |
238050dy1 |
238050.dy |
238050dy |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{2} \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3725568$ |
$1.992203$ |
$2109375/67712$ |
$1.22054$ |
$3.81116$ |
$[1, -1, 1, 37195, -20387123]$ |
\(y^2+xy+y=x^3-x^2+37195x-20387123\) |
8.2.0.a.1 |
$[]$ |
331200.z1 |
331200z1 |
331200.z |
331200z |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1354752$ |
$1.464176$ |
$2109375/67712$ |
$1.22054$ |
$3.21363$ |
$[0, 0, 0, 4500, -857520]$ |
\(y^2=x^3+4500x-857520\) |
8.2.0.a.1 |
$[]$ |
331200.bm1 |
331200bm1 |
331200.bm |
331200bm |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6773760$ |
$2.268894$ |
$2109375/67712$ |
$1.22054$ |
$3.97337$ |
$[0, 0, 0, 112500, 107190000]$ |
\(y^2=x^3+112500x+107190000\) |
8.2.0.a.1 |
$[]$ |
331200.po1 |
331200po1 |
331200.po |
331200po |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{8} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6773760$ |
$2.268894$ |
$2109375/67712$ |
$1.22054$ |
$3.97337$ |
$[0, 0, 0, 112500, -107190000]$ |
\(y^2=x^3+112500x-107190000\) |
8.2.0.a.1 |
$[]$ |
331200.qd1 |
331200qd1 |
331200.qd |
331200qd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 23 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{2} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1354752$ |
$1.464176$ |
$2109375/67712$ |
$1.22054$ |
$3.21363$ |
$[0, 0, 0, 4500, 857520]$ |
\(y^2=x^3+4500x+857520\) |
8.2.0.a.1 |
$[]$ |
332350.a1 |
332350a1 |
332350.a |
332350a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 17^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$3.246499544$ |
$1$ |
|
$2$ |
$2411136$ |
$1.291756$ |
$2109375/67712$ |
$1.22054$ |
$3.05001$ |
$[1, -1, 0, 2258, -305324]$ |
\(y^2+xy=x^3-x^2+2258x-305324\) |
8.2.0.a.1 |
$[(73, 458)]$ |
332350.dq1 |
332350dq1 |
332350.dq |
332350dq |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 17^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 17^{6} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$12055680$ |
$2.096474$ |
$2109375/67712$ |
$1.22054$ |
$3.80954$ |
$[1, -1, 1, 56445, -38109053]$ |
\(y^2+xy+y=x^3-x^2+56445x-38109053\) |
8.2.0.a.1 |
$[]$ |
415150.s1 |
415150s1 |
415150.s |
415150s |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{8} \cdot 19^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.012655386$ |
$1$ |
|
$0$ |
$18098640$ |
$2.152088$ |
$2109375/67712$ |
$1.22054$ |
$3.79562$ |
$[1, -1, 0, 70508, 53166416]$ |
\(y^2+xy=x^3-x^2+70508x+53166416\) |
8.2.0.a.1 |
$[(-875/3, 183208/3)]$ |
415150.y1 |
415150y1 |
415150.y |
415150y |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19^{2} \cdot 23 \) |
\( - 2^{7} \cdot 5^{2} \cdot 19^{6} \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3619728$ |
$1.347368$ |
$2109375/67712$ |
$1.22054$ |
$3.04915$ |
$[1, -1, 1, 2820, 424767]$ |
\(y^2+xy+y=x^3-x^2+2820x+424767\) |
8.2.0.a.1 |
$[]$ |
450800.a1 |
450800a1 |
450800.a |
450800a |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 23 \) |
\( - 2^{19} \cdot 5^{8} \cdot 7^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$3.002204051$ |
$1$ |
|
$2$ |
$17418240$ |
$2.345970$ |
$2109375/67712$ |
$1.22054$ |
$3.95031$ |
$[0, 0, 0, 153125, -170213750]$ |
\(y^2=x^3+153125x-170213750\) |
8.2.0.a.1 |
$[(959, 29302)]$ |
450800.ha1 |
450800ha1 |
450800.ha |
450800ha |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 23 \) |
\( - 2^{19} \cdot 5^{2} \cdot 7^{6} \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.200185482$ |
$1$ |
|
$0$ |
$3483648$ |
$1.541250$ |
$2109375/67712$ |
$1.22054$ |
$3.20857$ |
$[0, 0, 0, 6125, -1361710]$ |
\(y^2=x^3+6125x-1361710\) |
8.2.0.a.1 |
$[(3649/3, 222272/3)]$ |