Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
435.d1 435.d \( 3 \cdot 5 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -258, -1589]$ \(y^2+xy+y=x^3-258x-1589\) 2.3.0.a.1, 4.12.0-4.c.1.2, 10.6.0.a.1, 20.24.0-20.g.1.1, 232.24.0.?, $\ldots$
1305.b1 1305.b \( 3^{2} \cdot 5 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2318, 42896]$ \(y^2+xy+y=x^3-x^2-2318x+42896\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.1, 20.12.0.g.1, $\ldots$
2175.b1 2175.b \( 3 \cdot 5^{2} \cdot 29 \) $2$ $\Z/2\Z$ $0.482474972$ $[1, 1, 1, -6438, -198594]$ \(y^2+xy+y=x^3+x^2-6438x-198594\) 2.3.0.a.1, 4.12.0-4.c.1.2, 10.6.0.a.1, 20.24.0-20.g.1.1, 232.24.0.?, $\ldots$
6525.j1 6525.j \( 3^{2} \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -57942, 5304091]$ \(y^2+xy=x^3-x^2-57942x+5304091\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.1, 20.12.0.g.1, $\ldots$
6960.l1 6960.l \( 2^{4} \cdot 3 \cdot 5 \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -4120, 101680]$ \(y^2=x^3-x^2-4120x+101680\) 2.3.0.a.1, 4.12.0-4.c.1.1, 10.6.0.a.1, 20.24.0-20.g.1.2, 232.24.0.?, $\ldots$
12615.b1 12615.b \( 3 \cdot 5 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -216575, -38314888]$ \(y^2+xy+y=x^3+x^2-216575x-38314888\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
20880.a1 20880.a \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 29 \) $1$ $\Z/2\Z$ $2.660827370$ $[0, 0, 0, -37083, -2708278]$ \(y^2=x^3-37083x-2708278\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.2, 20.12.0.g.1, $\ldots$
21315.p1 21315.p \( 3 \cdot 5 \cdot 7^{2} \cdot 29 \) $1$ $\Z/2\Z$ $1.038216018$ $[1, 1, 0, -12618, 532323]$ \(y^2+xy=x^3+x^2-12618x+532323\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$
27840.be1 27840.be \( 2^{6} \cdot 3 \cdot 5 \cdot 29 \) $1$ $\Z/2\Z$ $6.245590974$ $[0, -1, 0, -16481, -796959]$ \(y^2=x^3-x^2-16481x-796959\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
27840.cg1 27840.cg \( 2^{6} \cdot 3 \cdot 5 \cdot 29 \) $1$ $\Z/2\Z$ $2.914715578$ $[0, 1, 0, -16481, 796959]$ \(y^2=x^3+x^2-16481x+796959\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
34800.du1 34800.du \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -103008, 12503988]$ \(y^2=x^3+x^2-103008x+12503988\) 2.3.0.a.1, 4.12.0-4.c.1.1, 10.6.0.a.1, 20.24.0-20.g.1.2, 232.24.0.?, $\ldots$
37845.h1 37845.h \( 3^{2} \cdot 5 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1949175, 1032552796]$ \(y^2+xy=x^3-x^2-1949175x+1032552796\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.3, $\ldots$
52635.e1 52635.e \( 3 \cdot 5 \cdot 11^{2} \cdot 29 \) $2$ $\Z/2\Z$ $2.763638238$ $[1, 0, 0, -31160, 2083467]$ \(y^2+xy=x^3-31160x+2083467\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 44.12.0-4.c.1.1, $\ldots$
63075.u1 63075.u \( 3 \cdot 5^{2} \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -5414376, -4778532227]$ \(y^2+xy+y=x^3-5414376x-4778532227\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.1, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
63945.j1 63945.j \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -113567, -14486286]$ \(y^2+xy+y=x^3-x^2-113567x-14486286\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 84.12.0.?, $\ldots$
73515.d1 73515.d \( 3 \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $3.343505105$ $[1, 0, 0, -43521, -3446964]$ \(y^2+xy=x^3-43521x-3446964\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 52.12.0-4.c.1.1, $\ldots$
83520.dr1 83520.dr \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) $1$ $\Z/2\Z$ $4.985519441$ $[0, 0, 0, -148332, -21666224]$ \(y^2=x^3-148332x-21666224\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.2, $\ldots$
83520.gg1 83520.gg \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -148332, 21666224]$ \(y^2=x^3-148332x+21666224\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.1, $\ldots$
104400.fq1 104400.fq \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) $1$ $\Z/2\Z$ $6.480388184$ $[0, 0, 0, -927075, -338534750]$ \(y^2=x^3-927075x-338534750\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.2, 20.12.0.g.1, $\ldots$
106575.z1 106575.z \( 3 \cdot 5^{2} \cdot 7^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -315463, 67171292]$ \(y^2+xy=x^3-315463x+67171292\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 28.12.0-4.c.1.1, $\ldots$
125715.u1 125715.u \( 3 \cdot 5 \cdot 17^{2} \cdot 29 \) $1$ $\Z/2\Z$ $10.05942085$ $[1, 1, 0, -74423, -7731108]$ \(y^2+xy=x^3+x^2-74423x-7731108\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 68.12.0-4.c.1.1, $\ldots$
139200.eh1 139200.eh \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -412033, 100443937]$ \(y^2=x^3-x^2-412033x+100443937\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
139200.fq1 139200.fq \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -412033, -100443937]$ \(y^2=x^3+x^2-412033x-100443937\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
157035.f1 157035.f \( 3 \cdot 5 \cdot 19^{2} \cdot 29 \) $1$ $\Z/2\Z$ $2.254642300$ $[1, 1, 1, -92965, 10711310]$ \(y^2+xy+y=x^3+x^2-92965x+10711310\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 76.12.0.?, $\ldots$
157905.bg1 157905.bg \( 3^{2} \cdot 5 \cdot 11^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -280440, -56253609]$ \(y^2+xy=x^3-x^2-280440x-56253609\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 132.12.0.?, $\ldots$
189225.g1 189225.g \( 3^{2} \cdot 5^{2} \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -48729380, 129020370122]$ \(y^2+xy+y=x^3-x^2-48729380x+129020370122\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.5, $\ldots$
201840.cv1 201840.cv \( 2^{4} \cdot 3 \cdot 5 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -3465200, 2445222420]$ \(y^2=x^3+x^2-3465200x+2445222420\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$
220545.bh1 220545.bh \( 3^{2} \cdot 5 \cdot 13^{2} \cdot 29 \) $1$ $\Z/2\Z$ $8.104124402$ $[1, -1, 0, -391689, 93068028]$ \(y^2+xy=x^3-x^2-391689x+93068028\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 156.12.0.?, $\ldots$
230115.x1 230115.x \( 3 \cdot 5 \cdot 23^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -136229, 19057871]$ \(y^2+xy+y=x^3-136229x+19057871\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 92.12.0.?, $\ldots$
263175.ci1 263175.ci \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -779000, 260433375]$ \(y^2+xy=x^3+x^2-779000x+260433375\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 44.12.0-4.c.1.1, $\ldots$
319725.dq1 319725.dq \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 29 \) $1$ $\Z/2\Z$ $11.20841230$ $[1, -1, 0, -2839167, -1813624884]$ \(y^2+xy=x^3-x^2-2839167x-1813624884\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 84.12.0.?, $\ldots$
341040.fz1 341040.fz \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 29 \) $1$ $\Z/2\Z$ $2.093335299$ $[0, 1, 0, -201896, -34472460]$ \(y^2=x^3+x^2-201896x-34472460\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 28.12.0-4.c.1.2, $\ldots$
367575.bs1 367575.bs \( 3 \cdot 5^{2} \cdot 13^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1088025, -430870500]$ \(y^2+xy=x^3+x^2-1088025x-430870500\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 52.12.0-4.c.1.1, $\ldots$
377145.p1 377145.p \( 3^{2} \cdot 5 \cdot 17^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -669812, 208070106]$ \(y^2+xy+y=x^3-x^2-669812x+208070106\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 204.12.0.?, $\ldots$
417600.k1 417600.k \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) $1$ $\Z/2\Z$ $2.443681323$ $[0, 0, 0, -3708300, 2708278000]$ \(y^2=x^3-3708300x+2708278000\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.1, $\ldots$
417600.pm1 417600.pm \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3708300, -2708278000]$ \(y^2=x^3-3708300x-2708278000\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.2, $\ldots$
418035.m1 418035.m \( 3 \cdot 5 \cdot 29 \cdot 31^{2} \) $1$ $\Z/2\Z$ $6.026905154$ $[1, 1, 0, -247477, 46588036]$ \(y^2+xy=x^3+x^2-247477x+46588036\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 124.12.0.?, $\ldots$
471105.bb1 471105.bb \( 3^{2} \cdot 5 \cdot 19^{2} \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -836685, -290042060]$ \(y^2+xy=x^3-x^2-836685x-290042060\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 228.12.0.?, $\ldots$
  displayed columns for results